×

zbMATH — the first resource for mathematics

Preserving fuzzy subgroups and indistinguishability operators. (English) Zbl 1423.20072
Summary: In this paper, we study the class of all fuzzy subgroups defined with respect to a given t-norm on a fixed group. We find necessary and sufficient conditions over two t-norms to guarantee that the class of all fuzzy subgroups induced by the first t-norm is contained in the class of all fuzzy subgroups with respect to by the second one. We characterize the functions that transform fuzzy subgroups into fuzzy subgroups. The close relationship between indistinguishability operators and fuzzy subgroups allows us to obtain similar results for some classes of indistinguishability operators.
MSC:
20N25 Fuzzy groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anthony, J.; Sherwood, H., Fuzzy groups redefined, J. Math. Anal. Appl., 69, 124-130 (1979) · Zbl 0413.20041
[2] Anthony, J.; Sherwood, H., A characterization of fuzzy subgroups, Fuzzy Sets Syst., 7, 297-305 (1982) · Zbl 0524.20050
[3] Bloch, I.; Maitre, H., Fuzzy mathematical morphologies: a comparative study, Pattern Recognit., 28, 1341-1387 (1995)
[4] Boixader, D.; Mayor, G.; Recasens, J., Aggregating fuzzy subgroups and t-vague subgroups, (AGOP2017, vol. 6 (2017)), 40-52
[5] Carmona, N.; Elorza, J.; Recasens, J.; Bragard, J., Permutable fuzzy consequence and interior operators and their connection with fuzzy relations, Inf. Sci., 310, 36-51 (2015) · Zbl 1387.03043
[6] Cheng, S.; Mordeson, J., Applications of fuzzy algebra in automata theory and coding theory, (IEEE International Conference on Fuzzy Systems, vol. 1 (1996)), 125-129
[7] Chon, I., Some properties of fuzzy topological groups, Fuzzy Sets Syst., 123, 197-201 (2001) · Zbl 1014.54007
[8] Das, P., Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84, 264-269 (1981) · Zbl 0476.20002
[9] Demirci, M., Fundamentals of m-vague algebra and m-vague arithmetic operations, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10, 25-75 (2002) · Zbl 1061.08006
[10] Demirci, M.; Recasens, J., Fuzzy groups, fuzzy functions and fuzzy equivalence relations, Fuzzy Sets Syst., 144, 441-458 (2004) · Zbl 1066.20076
[11] Esteva, F., Negaciones en retĂ­culos completos, Stochastica, 1, 49-66 (1975)
[12] Hosseinpour, E., T-rough fuzzy subgroups of groups, J. Math. Comput. Sci., 12, 186-195 (2014)
[13] Jacas, J.; Recasens, J., Maps and isometries between indistinguishability operators, Soft Comput., 6, 14-20 (2002) · Zbl 0991.03050
[14] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms (2000), Springer Netherlands: Springer Netherlands Dordrecht · Zbl 0972.03002
[15] Mayor, G.; Recasens, J., Preserving t-transitivity, (International Conference of the Catalan Association for Artificial Intelligence (2016)), 79-87
[16] Mordeson, J. N.; Bhutani, K. R.; Rosenfeld, A., Fuzzy Group Theory (2005), Springer · Zbl 1082.20048
[17] Recasens, J., Indistinguishability Operators - Modelling Fuzzy Equalities and Fuzzy Equivalence Relations, Stud. Fuzziness Soft Comput., vol. 260 (2011), Springer · Zbl 1215.03065
[18] Recasens, J., Permutable indistinguishability operators, perfect vague groups and fuzzy subgroups, Inf. Sci., 196, 129-142 (2012) · Zbl 1251.20070
[19] Rosenfeld, A., Fuzzy groups, J. Math. Anal. Appl., 35, 512-517 (1971) · Zbl 0194.05501
[20] Schweizer, B.; Sklar, A., Probabilistic Metric Spaces (1983), North-Holland: North-Holland New York, NY · Zbl 0546.60010
[21] Zadeh, L., Similarity relations and fuzzy orderings, Inf. Sci., 3, 177-200 (1971) · Zbl 0218.02058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.