×

A new method to study ILC problem for time-delay linear systems. (English) Zbl 1422.93102

Summary: In this paper, we apply a new method, a delayed matrix exponential, to study P-type and D-type learning laws for time-delay controlled systems to track the varying reference accurately by using a few iterations in a finite time interval. We present open-loop P- and D-type asymptotic convergence results in the sense of \(\lambda\)-norm by virtue of spectral radius of matrix. Finally, four examples are given to illustrate our theoretical results.

MSC:

93C40 Adaptive control/observation systems
93C15 Control/observation systems governed by ordinary differential equations
34A37 Ordinary differential equations with impulses
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balachandran, B, Kalmár-Nagy, T, Gilsinn, DE: Delay Differential Equations. Springer, Berlin (2009) · Zbl 1162.34003
[2] He, J: Variational iteration method for delay differential equations. Commun. Nonlinear Sci. Numer. Simul. 2, 235-236 (1997) · Zbl 0924.34063 · doi:10.1016/S1007-5704(97)90008-3
[3] Wang, Q, Liu, XZ: Exponential stability for impulsive delay differential equations by Razumikhin method. J. Math. Anal. Appl. 309, 462-473 (2005) · Zbl 1084.34066 · doi:10.1016/j.jmaa.2004.09.016
[4] Wen, Y, Zhou, XF, Zhang, Z, Liu, S: Lyapunov method for nonlinear fractional differential systems with delay. Nonlinear Dyn. 82, 1015-1025 (2015) · Zbl 1348.34027 · doi:10.1007/s11071-015-2214-y
[5] Abbas, S, Benchohra, M, Rivero, M, Trujillo, JJ: Existence and stability results for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes quadratic integral equations. Appl. Math. Comput. 247, 319-328 (2014) · Zbl 1338.45004
[6] Zhang, GL, Song, MH, Liu, MZ: Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations. J. Comput. Appl. Math. 285, 32-44 (2015) · Zbl 1323.34085 · doi:10.1016/j.cam.2015.01.034
[7] Uchiyama, M: Formulation of high-speed motion pattern of a mechanical arm by trial. Trans. Soc. Instrum. Control Eng. 14, 706-712 (1978) · doi:10.9746/sicetr1965.14.706
[8] Arimoto, S, Kawamura, S: Bettering operation of robots by learning. J. Robot. Syst. 1, 123-140 (1984) · doi:10.1002/rob.4620010203
[9] Xu, JX, Xu, J: On iterative learning for different tracking tasks in the presence of time-varying uncertainties. IEEE Trans. Syst. Man Cybern. B 34, 589-597 (2004) · doi:10.1109/TSMCB.2003.818433
[10] Ahn, HS, Moore, KL, Chen, YQ: Iterative Learning Control: Robustness and Monotonic Convergence in the Iteration Domain. Communications and Control Engineering Series. Springer, Berlin (2007) · Zbl 1162.93025 · doi:10.1007/978-1-84628-859-3
[11] Luo, Y, Chen, YQ: Fractional order controller for a class of fractional order systems. Automatica 45, 2446-2450 (2009) · Zbl 1183.93053 · doi:10.1016/j.automatica.2009.06.022
[12] Li, Y.; Chen, YQ; Ahn, HS, On the PDα \(PD^{\alpha}\)-type iterative learning control for the fractional-order nonlinear systems, 4320-4325 (2011)
[13] Bien, ZZ, Xu, JX (eds.): Iterative Learning Control: Analysis, Design, Integration and Applications. Springer, Media (2012)
[14] Li, ZG, Chang, YW, Soh, YC: Analysis and design of impulsive control systems. IEEE Trans. Autom. Control 46, 894-897 (2001) · Zbl 1001.93068 · doi:10.1109/9.928590
[15] Sun, MX: Robust convergence analysis of iterative learning control systems. Control Theory Appl. 15, 320-326 (1998)
[16] Lee, HS, Bien, Z: Design issues on robustness and convergence of iterative learning controller. Intell. Autom. Soft Comput. 8, 95-106 (2002) · doi:10.1080/10798587.2002.10644209
[17] Sun, MX, Chen, YQ, Huang, BJ: High order iterative learning control system for nonlinear time-delay systems. Acta Autom. Sin. 20, 360-365 (1994)
[18] Sun, MX: Iterative learning control algorithms for uncertain time-delay systems (I). J. Xi’an Instit. Technol. 17, 259-266 (1997)
[19] Sun, MX: Iterative learning control algorithms for uncertain time-delay systems (II). J. Xi’an Instit. Technol. 18, 1-8 (1998)
[20] Khusainov, DY, Shuklin, GV: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina Math. Ser. 17, 101-108 (2003) · Zbl 1064.34042
[21] Khusainov, DY, Shuklin, GV: Relative controllability in systems with pure delay. Int. J. Appl. Math. 2, 210-221 (2005) · Zbl 1100.34062
[22] Medved’, M, Pospišil, M, Škripokvá, L: Stability and the nonexistence of blowing-up solutions of nonlinear delay systems with linear parts defined by permutable matrices. Nonlinear Anal. TMA 74, 3903-3911 (2011) · Zbl 1254.34104 · doi:10.1016/j.na.2011.02.026
[23] Medveď, M, Pospišil, M: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. TMA 75, 3348-3363 (2012) · Zbl 1244.34096 · doi:10.1016/j.na.2011.12.031
[24] Diblik, J, Fečkan, M, Pospišil, M: Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices. Ukr. Math. J. 65, 58-69 (2013) · Zbl 1283.34057
[25] Boichuk, A, Diblik, J, Khusainov, D, Růžičková, M: Fredholm’s boundary-value problems for differential systems with a single delay. Nonlinear Anal. TMA 72, 2251-2258 (2010) · Zbl 1190.34073 · doi:10.1016/j.na.2009.10.025
[26] Boichuk, A, Diblik, J, Khusainov, D, Růžičková, M: Boundary value problems for delay differential systems. Adv. Differ. Equ. 2010, Article ID 593834 (2010) · Zbl 1204.34087 · doi:10.1186/1687-1847-2010-593834
[27] Boichuk, A, Diblik, J, Khusainov, D, Růžičková, M: Boundary-value problems for weakly nonlinear delay differential systems. Abstr. Appl. Anal. 2011, Article ID 631412 (2011) · Zbl 1222.34075
[28] Ortega, JM, Rheinboldt, WC: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, San Diego (1970) · Zbl 0241.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.