×

zbMATH — the first resource for mathematics

Application of exp-function method to the Whitham-Broer-Kaup shallow water model using symbolic computation. (English) Zbl 1422.76146
Summary: The Exp-function method is applied to the Whitham-Broer-Kaup shallow water model. With the help of symbolic computation, several kinds of new solitary wave solutions are formally derived.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
35Q35 PDEs in connection with fluid mechanics
35C08 Soliton solutions
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J.; Clarkson, P.A., Solitons nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press New York · Zbl 0762.35001
[2] Wadati, M., Stochastic korteweg – de Vries equation, J. phys. soc. jpn., 52, 2642-2648, (1983)
[3] Hirota, R., Exact solution of the korteweg – de Vries equation for multiple collisions of solitons, Phys. rev. lett., 27, 1192-1194, (1971) · Zbl 1168.35423
[4] Wahlquist, H.D.; Estabrook, F.B., Bäcklund transformation for solutions of the korteweg – de Vries equation, Phys. lett. A, 31, 1386-1390, (1973)
[5] Konno, K.; Wadati, M., Simple derivation of Bäcklund transformation from Riccati form of inverse method, Prog. theor. phys., 53, 1652-1656, (1975) · Zbl 1079.35505
[6] Tian, B.; Gao, Y.T., Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation, Eur. phys. J. D, 33, 59-65, (2005)
[7] Gao, Y.T.; Tian, B., On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations, Europhys. lett., 77, 15001-15006, (2007)
[8] Matveev, V.B.; Salle, M.A., Darboux transformation and soliton, (1991), Springer Berlin · Zbl 0744.35045
[9] Dubrousky, V.G.; Konopelchenko, B.G., Delta-dressing and exact solutions for the (2+1)-dimensional Harry Dym equation, J. phys. A, 27, 4619-4628, (1994) · Zbl 0842.35103
[10] Weiss, J.; Tabor, M.; Carnevale, G., The Painlevé property for partial differential equations, J. math. phys., 24, 522-526, (1983) · Zbl 0514.35083
[11] Wazwaz, A.M., Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method, Comput. math. appl., 50, 1685-1696, (2005) · Zbl 1089.35534
[12] Wazwaz, A.M., A sine-cosine method for handling nonlinear wave equations, Math. comput. model, 40, 499-508, (2004) · Zbl 1112.35352
[13] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. phys., 60, 650-654, (1992) · Zbl 1219.35246
[14] Malfliet, W.; Hereman, W., The tanh method. I: exact solutions of nonlinear evolution and wave equations, Phys. scr., 54, 563-568, (1996) · Zbl 0942.35034
[15] Liu, S.K.; Fu, Z.T.; Liu, S.D.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. lett. A, 289, 69-74, (2001) · Zbl 0972.35062
[16] He, J.H.; Wu, X.H., Exp-function method for nonlinear wave equations, Chaos solitons fractals, 30, 700-708, (2006) · Zbl 1141.35448
[17] Xie, F.D.; Gao, X.S., Applications of computer algebra in solving nonlinear evolution equations, Commun. theor. phys., 41, 353-356, (2004) · Zbl 1167.35300
[18] Yan, Z.Y.; Zhang, H.Q., Symbolic computation and new families of exact soliton-like solutions to the integrable broer – kaup (BK) equations in (2+1)-dimensional spaces, J. phys. A, 34, 1785-1792, (2001) · Zbl 0970.35147
[19] He, J.H.; Abdou, M.A., New periodic solutions for nonlinear evolution equations using exp-function method, Chaos solitons fractals, 34, 1421-1429, (2007) · Zbl 1152.35441
[20] Abdou, M.A.; Solimanm, A.A.; El-Basyony, S.T., New application of exp-function method for improved Boussinesq equation, Phys. lett. A, 369, 469-475, (2007) · Zbl 1209.81091
[21] Zhang, S., Application of exp-function method to a KdV equation with variable coefficients, Phys. lett. A, 365, 448-453, (2007) · Zbl 1203.35255
[22] El-Wakil, S.A.; Madkour, M.A.; Abdou, M.A., Application of exp-function method for nonlinear evolution equations with variable coefficients, Phys. lett. A, 369, 62-69, (2007) · Zbl 1209.81097
[23] Ebaid, A., Exact solitary wave solutions for some nonlinear evolution equations via exp-function method, Phys. lett. A, 365, 213-219, (2007) · Zbl 1203.35213
[24] Bekir, A.; Boz, A., Exact solutions for nonlinear evolution equations using exp-function method, Phys. lett. A, 372, 1619-1625, (2008) · Zbl 1217.35151
[25] He, J.H.; Zhang, L.N., Generalized solitary solution and compacton-like solution of the jaulent – miodek equations using the exp-function method, Phys. lett. A, 372, 1044-1047, (2008) · Zbl 1217.35152
[26] Kupershmidt, B.A., Mathematics of dispersive water waves, Commun. math. phys., 99, 51-73, (1985) · Zbl 1093.37511
[27] Fan, E.G.; Zhang, H.Q., Bäcklund transformation and exact solutions for whitham – broer – kaup equations in shallow water, Appl. math. mech., 19, 713-716, (1998) · Zbl 0922.35152
[28] Xie, F.D.; Yan, Z.Y.; Zhang, H.Q., Explicit and exact traveling wave solutions of whitham – broer – kaup shallow water equations, Phys. lett. A, 285, 76-80, (2001) · Zbl 0969.76517
[29] Xu, G.Q.; Li, Z.B., Exact travelling wave solutions of the whitham – broer – kaup and broer – kaup – kupershmidt equations, Chaos solitons fractals, 24, 549-556, (2005) · Zbl 1069.35067
[30] Jiao, X.Y.; Zhang, H.Q., An extended method and its application to whitham – broer – kaup equation and two-dimensional perturbed KdV equation, Appl. math. comput., 172, 664-677, (2006) · Zbl 1091.35532
[31] Abdou, M.A., The extended tanh method and its applications for solving nonlinear physical models, Appl. math. comput., 190, 988-996, (2007) · Zbl 1123.65103
[32] Xu, T.; Li, J.; Zhang, H.Q.; Zhang, Y.X.; Yao, Z.Z.; Tian, B., New extension of the tanh-function method and application to the whitham – broer – kaup shallow water model with symbolic computation, Phys. lett. A, 369, 458-463, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.