zbMATH — the first resource for mathematics

Conditions for validity of mean flow stability analysis. (English) Zbl 1422.76070
Summary: This article provides theoretical conditions for the use and meaning of a stability analysis around a mean flow. As such, it may be considered as an extension of the works by B. J. McKeon and A. S. Sharma [ibid. 658, 336–382 (2010; Zbl 1205.76138)] to non-parallel flows and by S. E. Turton, L. S. Tuckerman and D. Barkley [“Prediction of frequencies in thermosolutal convection from mean flows”, Phys. Rev. E (3) 91, No. 4, Article ID 043009, 10 p. (2015; doi:10.1103/PhysRevE.91.043009)] to broadband flows. Considering a Reynolds decomposition of the flow field, the spectral (or temporal Fourier) mode of the fluctuation field is found to be equal to the action on a turbulent forcing term by the resolvent operator arising from linearisation about the mean flow. The main result of the article states that if, at a particular frequency, the dominant singular value of the resolvent is much larger than all others and if the turbulent forcing at this frequency does not display any preferential direction toward one of the suboptimal forcings, then the spectral mode is directly proportional to the dominant optimal response mode of the resolvent at this frequency. Such conditions are generally met in the case of weakly non-parallel open flows exhibiting a convectively unstable mean flow. The spatial structure of the singular mode may in these cases be approximated by a local spatial stability analysis based on parabolised stability equations (PSE). We have also shown that the frequency spectrum of the flow field at any arbitrary location of the domain may be predicted from the frequency evolution of the dominant optimal response mode and the knowledge of the frequency spectrum at one or more points. Results are illustrated in the case of a high Reynolds number turbulent backward facing step flow.

76Exx Hydrodynamic stability
76Fxx Turbulence
Full Text: DOI
[1] Adams, E. W.; Johnston, J. P., Effects of the separating shear layer on the reattachment flow structure. Part 2: reattachment length and wall shear stress, Exp. Fluids, 6, 7, 493-499, (1988)
[2] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y.; Koster, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Applics., 23, 1, 15-41, (2001) · Zbl 0992.65018
[3] Andersson, P.; Henningson, D. S.; Hanifi, A., On a stabilization procedure for the parabolic stability equations, J. Engng Maths, 33, 3, 311-332, (1998) · Zbl 0920.76025
[4] Barkley, D., Linear analysis of the cylinder wake mean flow, Europhys. Lett., 75, 5, 750-756, (2006)
[5] Boujo, E.; Gallaire, F., Sensitivity and open-loop control of stochastic response in a noise amplifier flow: the backward-facing step, J. Fluid Mech., 762, 361-392, (2015)
[6] Butler, K. M.; Farrell, B. F., Optimal perturbations and streak spacing in wall-bounded turbulent shear flow, Phys. Fluids A, 5, 3, 774-777, (1993)
[7] Cambier, L.; Heib, S.; Plot, S., The onera elsa cfd software: input from research and feedback from industry, Mech. Ind., 14, 3, 159-174, (2013)
[8] Chernyshenko, S. I.; Baig, M. F., The mechanism of streak formation in near-wall turbulence, J. Fluid Mech., 544, 99-131, (2005) · Zbl 1083.76031
[9] Chun, K.-B.; Sung, H. J., Control of turbulent separated flow over a backward-facing step by local forcing, Exp. Fluids, 21, 6, 417-426, (1996)
[10] Cossu, C.; Pujals, G.; Depardon, S., Optimal transient growth and very large-scale structures in turbulent boundary layers, J. Fluid Mech., 619, 79-94, (2009) · Zbl 1156.76400
[11] Dandois, J.; Garnier, E.; Sagaut, P., Numerical simulation of active separation control by a synthetic jet, J. Fluid Mech., 574, 25-58, (2007) · Zbl 1133.76324
[12] Deck, S., Zonal-detached-eddy simulation of the flow around a high-lift configuration, AIAA J., 43, 11, 2372-2384, (2005)
[13] Del Álamo, J. C.; Jimenez, J., Linear energy amplification in turbulent channels, J. Fluid Mech., 559, 205-213, (2006) · Zbl 1095.76021
[14] Dergham, G.; Sipp, D.; Robinet, J.-Ch., Stochastic dynamics and model reduction of amplifier flows: the backward facing step flow, J. Fluid Mech., 719, 406-430, (2013) · Zbl 1284.76317
[15] Driver, D. M.; Seegmiller, H. L.; Marvin, J., Time-dependent behavior of a reattaching shear layer, AIAA J., 25, 7, 914-919, (1987)
[16] Farrell, B. F.; Ioannou, P. J., Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow, J. Fluid Mech., 708, 149-196, (2012) · Zbl 1275.76125
[17] Foures, D. P. G.; Caulfield, C. P.; Schmid, P. J., Localization of flow structures using-norm optimization, J. Fluid Mech., 729, 672-701, (2013) · Zbl 1291.76124
[18] Gallas, Q.; Arnault, A.; Monnier, J. C.; Delva, J.; Dandois, J.; Mialon, B., Rapport annuel d’activit du pr hybexcit, ONERA Tech. Rep., RT 1/20871, (2015)
[19] Garnaud, X.; Lesshafft, L.; Schmid, P. J.; Huerre, P., The preferred mode of incompressible jets: linear frequency response analysis, J. Fluid Mech., 716, 189-202, (2013) · Zbl 1284.76149
[20] Gudmundsson, K.; Colonius, T., Instability wave models for the near-field fluctuations of turbulent jets, J. Fluid Mech., 689, 97-128, (2011) · Zbl 1241.76203
[21] Herbert, T., Parabolized stability equations, Annu. Rev. Fluid Mech., 29, 1, 245-283, (1997)
[22] Le, H.; Moin, P.; Kim, J., Direct numerical simulation of turbulent flow over a backward-facing step, J. Fluid Mech., 330, 349-374, (1997) · Zbl 0900.76367
[23] Lehoucq, R. B., Sorensen, D. C. & Yang, C.1998ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol. 6. SIAM. doi:10.1137/1.97808987196281621681 · Zbl 0901.65021
[24] Mantič-Lugo, V.2015 Too big to grow: self-consistent model for nonlinear saturation in open shear flows. PhD thesis, Ecole Polytechnique Fédérale de Lausanne.
[25] Mantič-Lugo, V.; Arratia, C.; Gallaire, F., Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake, Phys. Rev. Lett., 113, 8, (2014) · Zbl 1382.76094
[26] Mantič-Lugo, V.; Arratia, C.; Gallaire, F., A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake, Phys. Fluids, 27, 7, (2015)
[27] Marquet, O.; Lombardi, M.; Chomaz, J.; Sipp, D.; Jacquin, L., Direct and adjoint global modes of a recirculation bubble: lift-up and convective non-normalities, J. Fluid Mech., 622, 1-21, (2009) · Zbl 1165.76337
[28] Mattingly, G. E.; Criminale, W. O., The stability of an incompressible two-dimensional wake, J. Fluid Mech., 51, 2, 233-272, (1972) · Zbl 0251.76029
[29] Mckeon, B. J.; Sharma, A. S., A critical-layer framework for turbulent pipe flow, J. Fluid Mech., 658, 336-382, (2010) · Zbl 1205.76138
[30] Mettot, C.; Sipp, D.; Bézard, H., Quasi-laminar stability and sensitivity analyses for turbulent flows: prediction of low-frequency unsteadiness and passive control, Phys. Fluids, 26, 4, (2014)
[31] Mittal, S., Global linear stability analysis of time-averaged flows, Intl J. Numer. Meth. Fluids, 58, 1, 111-118, (2008) · Zbl 1142.76027
[32] Moarref, R.; Jovanović, M. R., Model-based design of transverse wall oscillations for turbulent drag reduction, J. Fluid Mech., 707, 205-240, (2012) · Zbl 1275.76152
[33] Oberleithner, K.; Rukes, L.; Soria, J., Mean flow stability analysis of oscillating jet experiments, J. Fluid Mech., 757, 1-32, (2014)
[34] Pier, B., On the frequency selection of finite-amplitude vortex shedding in the cylinder wake, J. Fluid Mech., 458, 407-417, (2002) · Zbl 1060.76031
[35] Pujals, G.; García-Villalba, M.; Cossu, C.; Depardon, S., A note on optimal transient growth in turbulent channel flows, Phys. Fluids, 21, 1, (2009) · Zbl 1183.76425
[36] Sartor, F.; Mettot, C.; Bur, R.; Sipp, D., Unsteadiness in transonic shock-wave/boundary-layer interactions: experimental investigation and global stability analysis, J. Fluid Mech., 781, 550-577, (2015)
[37] Schmid, P. J.; Henningson, D. S., Stability and Transition in Shear Flows, vol. 142, (2012), Springer
[38] Sipp, D.; Lebedev, A., Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows, J. Fluid Mech., 593, 333-358, (2007) · Zbl 1172.76318
[39] Sipp, D.; Marquet, O., Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer, Theor. Comput. Fluid Dyn., 27, 5, 617-635, (2013)
[40] Sipp, D.; Marquet, O.; Meliga, P.; Barbagallo, A., Dynamics and control of global instabilities in open-flows: a linearized approach, Appl. Mech. Rev., 63, 3, (2010)
[41] Spazzini, P. G.; Iuso, G.; Onorato, M.; Zurlo, N.; Di Cicca, G. M., Unsteady behavior of back-facing step flow, Exp. Fluids, 30, 5, 551-561, (2001)
[42] Trefethen, L.; Trefethen, A.; Reddy, S.; Driscoll, T.; Others, Hydrodynamic stability without eigenvalues, Science, 261, 5121, 578-584, (1993) · Zbl 1226.76013
[43] Turton, S. E.; Tuckerman, L. S.; Barkley, D., Prediction of frequencies in thermosolutal convection from mean flows, Phys. Rev. E, 91, 4, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.