×

Skew multi-twisted codes over finite fields and their Galois duals. (English) Zbl 1421.94107

Summary: In this paper, we introduce a new class of linear codes over finite fields, viz. skew multi-twisted codes (or skew generalized quasi-twisted codes), which is a generalization of some well-known classes of linear codes such as cyclic codes and quasi-cyclic codes. We also study algebraic structures of skew multi-twisted codes and their Galois duals (i.e., orthogonal complements with respect to the Galois inner product). We also view skew multi-twisted codes as direct sums of certain concatenated codes, which gives rise to a method to construct these codes. We also determine a lower bound on their minimum Hamming distances using their multilevel concatenated structure. Apart from this, we determine the parity-check polynomial of each skew multi-twisted code, and obtain BCH type bounds on their minimum Hamming distances. We also determine generating sets of Galois duals of some skew multi-twisted codes from generating sets of these codes. We also derive necessary and sufficient conditions under which a skew multi-twisted code is (i) Galois self-dual, (ii) Galois self-orthogonal and (iii) Galois LCD (linear with complementary dual). As an application of this result, we also provide enumeration formulae for all Hermitian self-dual, Hermitian self-orthogonal, Hermitian LCD and Euclidean LCD multi-twisted codes over finite fields. We also obtain many linear codes with best known and optimal parameters from 1-generator skew multi-twisted codes over finite fields \(\mathbb{F}_8 \text{ and } \mathbb{F}_9\).

MSC:

94B15 Cyclic codes
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)

Software:

Code Tables
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abualrub, T.; Ghrayeb, A.; Aydin, N.; Siap, I., On the construction of skew quasi-cyclic codes, IEEE Trans. Inf. Theory, 56, 5, 183-195 (2010)
[2] Ackerman, R.; Aydin, N., New quinary linear codes from quasi-twisted codes and their duals, Appl. Math. Lett., 24, 4, 512-515 (2011) · Zbl 1203.94133
[3] Aydin, N.; Haliović, A., A generalization of quasi-twisted codes: multi-twisted codes, Finite Fields Appl., 45, 96-106 (2017) · Zbl 1392.94939
[4] Aydin, N.; Connolly, N.; Muphree, J., New binary linear codes from quasi-cyclic codes and an augmentation algorithm, Appl. Algebra Eng. Commun. Comput., 28, 339-350 (2017) · Zbl 1375.94168
[5] Aydin, N.; Connolly, N.; Grassl, M., Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes, Adv. Math. Commun., 11, 1, 245-258 (2017) · Zbl 1357.94089
[6] Aydin, N.; Siap, I.; Ray-Chaudhuri, D. K., The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Cryptogr., 23, 3, 313-326 (2001) · Zbl 0991.94057
[7] Berlekamp, E. R., Algebraic Coding Theory (1968), McGraw-Hill Book Company: McGraw-Hill Book Company New York · Zbl 0988.94521
[8] Bhaintwal, M., Skew quasi-cyclic codes over Galois rings, Des. Codes Cryptogr., 62, 85-101 (2012) · Zbl 1236.94086
[9] Boucher, D.; Gaborit, P.; Geiselmann, W.; Ulmer, F., Key exchange and encryption schemes based on non-commutative skew polynomials, PQCrypto, 6061, 126-141 (2010) · Zbl 1284.94055
[10] Boucher, D.; Ulmer, F., Coding with skew polynomial rings, J. Symb. Comput., 44, 1644-1656 (2009) · Zbl 1174.94025
[11] Boucher, D.; Geiselmann, W.; Ulmer, F., Skew cyclic codes, Appl. Algebra Eng. Commun. Comput., 18, 379-389 (2007) · Zbl 1159.94390
[12] Daskalov, R.; Hristov, P., Some new quasi-twisted ternary linear codes, J. Algebra Comb. Discret. Struct. Appl., 2, 3, 211-216 (2016) · Zbl 1371.94674
[13] Daskalov, R.; Hristov, P., New binary one-generator QC codes, IEEE Trans. Inf. Theory, 49, 11, 3001-3005 (2003) · Zbl 1298.94137
[14] Daskalov, R.; Hristov, P., New quasi-twisted degenerate ternary linear codes, IEEE Trans. Inf. Theory, 49, 9, 2259-2263 (2003) · Zbl 1298.94129
[15] Dinh, H. Q.; Nguyen, B. T.; Sriboonchitta, S., Skew constacyclic codes over finite fields and finite chain rings, Math. Probl. Eng., 2016, Article 3965789 pp. (2016), 17 pages · Zbl 1400.94192
[16] Esmaeili, M.; Yari, S., Generalized quasi-cyclic codes: structural properties and code construction, Appl. Algebra Eng. Commun. Comput., 20, 2, 159-173 (2009) · Zbl 1173.94453
[17] Fan, Y.; Zhang, L., Galois self-dual constacyclic codes, Des. Codes Cryptogr., 84, 473-492 (2017) · Zbl 1381.94135
[18] Gao, J.; Shen, L.; Fang-Wei, P., A Chinese remainder theorem approach to skew generalized quasi-cyclic codes over finite fields, Cryptogr. Commun., 8, 51-66 (2016) · Zbl 1344.94092
[19] Grassl, M., Bounds on the minimum distance of linear codes and quantum codes (“2018), online available at
[20] Güneri, C.; Özbudak, F.; Özkaya, B.; Sacikara, E.; Sepasdar, Z.; Sole, P., Structure and performance of generalized quasi-cyclic codes, Finite Fields Appl., 47, 183-202 (2017) · Zbl 1409.94945
[21] Grove, L. C., Classical Groups and Geometric Algebra (2008), American Mathematical Society: American Mathematical Society Providence, Rhode Island
[22] Huffman, W. C.; Pless, V., Fundamentals of Error-Correcting Codes (2003), Cambridge University Press · Zbl 1099.94030
[23] Jia, Y., On quasi-twisted codes over finite fields, Finite Fields Appl., 18, 237-257 (2012) · Zbl 1248.94116
[24] Kasami, T., A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2, IEEE Trans. Inf. Theory, 20, 5, 679 (1974) · Zbl 0295.94025
[25] Ling, S.; Solé, P., On the algebraic structure of quasi-cyclic codes I: finite fields, IEEE Trans. Inf. Theory, 47, 7, 2751-2760 (2001) · Zbl 1023.94015
[26] Ling, S.; Solé, P., On the algebraic structure of quasi-cyclic codes III: generator theory, IEEE Trans. Inf. Theory, 51, 7, 2692-2700 (2005) · Zbl 1172.94639
[27] McDonald, B. R., Finite Rings with Identity (1974), Marcel Dekker Press: Marcel Dekker Press New York · Zbl 0294.16012
[28] Jacobson, N., Finite-Dimensional Division Algebras over Fields (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0874.16002
[29] Ore, O., Theory of non-commutative polynomials, Ann. Math., 34, 480-508 (1933) · Zbl 0007.15101
[30] Prange, E., Cyclic Error-Correcting Codes in Two Symbols (1957), Air Force Cambridge Research Center, AFCRC-TN-57-103
[31] Saleh, A.; Easmaeili, M., On complementary dual quasi-twisted codes, J. Appl. Math. Comput., 56, 115-129 (2018) · Zbl 1430.94095
[32] Sharma, A.; Chauhan, V.; Singh, H., Multi-twisted codes over finite fields and their dual codes, Finite Fields Appl., 51, 270-297 (2018) · Zbl 1416.94072
[33] Sharma, A.; Kaur, T., Enumeration formulae for self-dual, self-orthogonal and complementary dual quasi-cyclic codes over finite fields, Cryptogr. Commun., 10, 401-435 (2018) · Zbl 1387.94124
[34] Siap, I.; Kulhan, N., The structure of generalized quasi-cyclic codes, Appl. Math. E-Notes, 5, 24-30 (2005) · Zbl 1077.94031
[35] Taylor, D. E., The Geometry of Classical Groups (2009), Heldermann-Verlag
[36] Townsend, R. L.; Weldon, E. J., Self-orthogonal quasi-cyclic codes, IEEE Trans. Inf. Theory, 13, 2, 183-195 (1967) · Zbl 0148.40305
[37] Weldon, E. J., Long quasi-cyclic codes are good, IEEE Trans. Inf. Theory, 16, 1, 130 (1970)
[38] Zhang, Y., A secret sharing scheme via skew polynomials, (Int. Conf. on Comp. Sci. and Appl.. Int. Conf. on Comp. Sci. and Appl., ICCSA (2010)), 33-38
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.