×

Interacting dark energy model in the brane scenario: a dynamical system analysis. (English) Zbl 1421.83144

MSC:

83F05 Relativistic cosmology
83E30 String and superstring theories in gravitational theory
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
83E05 Geometrodynamics and the holographic principle
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76E20 Stability and instability of geophysical and astrophysical flows
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] K. Akama, An early proposal of “‘brane world”, Lecture Notes in Physics176 (1982) 267-271; V. A. Rubakov and M. E. Shaposhnikov, Extra space-time dimensions: Towards a solution to the cosmological constant problem, Phys. Lett. B125 (1983) 139; G. W. Gibbons and D. L. Wiltshire, Space-time as a membrane in higher dimensions, Nucl. Phys. B287 (1987) 717-742; P. Horava and E. Witten, Heterotic and type I string dynamics from eleven-dimensions, Nucl. Phys. B460 (1996) 506-524; P. Horava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B475 (1996) 94-114; N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B429 (1998) 263-272; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B436 (1998) 257-263; N. Kaloper, Bent domain walls as brane worlds, Phys. Rev. D60 (1999) 123506.
[2] Randall, L.; Sundrum, R., A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370-3373, (1999) · Zbl 0946.81063
[3] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690-4693, (1999) · Zbl 0946.81074
[4] Langlois, D., Brane cosmology: An introduction, Prog. Theor. Phys. Suppl., 148, 181-212, (2003) · Zbl 1051.83022
[5] J. Garriga and T. Tanaka, Gravity in the brane world, Phys. Rev. Lett.84 (2000) 2778-2781; S. B. Giddings, E. Katz and L. Randall, Linearized gravity in brane backgrounds, J. High Energy Phys.0003 (2000) 023.
[6] Riess, A. G., New hubble space telescope discoveries of type Ia supernovae at \(z > = 1\): Narrowing constraints on the early behavior of dark energy, Astrophys. J., 659, 98-121, (2007)
[7] Davis, T. M., Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes, Astrophys. J., 666, 716-725, (2007)
[8] Wood-Vasey, W. Michael, Observational constraints on the nature of the dark energy: First cosmological results from the ESSENCE supernova survey, Astrophys. J., 666, 694-715, (2007)
[9] Tegmark, M., Cosmological parameters from SDSS and WMAP, Phys. Rev. D, 69, 103501, (2004) · Zbl 1405.83002
[10] Jarosik, N., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: Sky maps, systematic errors, and basic results, Astrophys. J. Suppl., 192, 14, (2011)
[11] Larson, D., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: Power spectra and WMAP-derived parameters, Astrophys. J. Suppl., 192, 16, (2011)
[12] Komatsu, E., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation, Astrophys. J. Suppl., 192, 18, (2011)
[13] T. P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys.82 (2010) 451-497; S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models, Phys. Rep.505 (2011) 59-144; Y.-B. Wu et al., Thermodynamic laws for generalized f(R) gravity with curvature-matter coupling, Phys. Lett. B717 (2012) 323-329; S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rep.692 (2017) 1-104, arXiv:1705.11098 [gr-qc].
[14] Capozziello, S., Curvature quintessence, Int. J. Mod. Phys. D, 11, 483-492, (2002) · Zbl 1062.83565
[15] Nojiri, S.; Odintsov, S. D., Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe, Phys. Rev. D, 74, 086005, (2006)
[16] A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B91 (1980) 99-102; R. Kerner, Cosmology without singularity and nonlinear gravitational Lagrangians, Gen. Relativ. Gravit.14 (1982) 453-469; J. D. Barrow and A. Ottewi, The stability of general relativistic cosmological theory, J. Phys. A16 (1983) 2757; V. Faraoni, Matter instability in modified gravity, Phys. Rev. D74 (2006) 104017; H. J. Schmidth, Fourth order gravity: Equations, history, and applications to cosmology, Int. J. Geom. Method. Mod. Phys.4 (2007) 209-248.
[17] S. Nojiri and S. D. Odintsov, Modified gravity with \(\ln R\) terms and cosmic acceleration, Gen. Relativ. Gravit.36 (2004) 1765-1780; S. Nojiri and S. D. Odintsov, The minimal curvature of the universe in modified gravity and conformal anomaly resolution of the instabilities, Mod. Phys. Lett. A19 (2004) 627-638; M. C. B. Abdalla, S. Nojiri and S. D. Odintsov, Consistent modified gravity: Dark energy, acceleration and the absence of cosmic doomsday, Class. Quantum. Gravit.22 (2005) L35-L42. · Zbl 1066.83017
[18] S. Nojiri and S. D. Odintsov, Where new gravitational physics comes from: M Theory?, Phys. Lett. B576 (2003) 5-11; S. M. Carroll et al., Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D70 (2004) 043528; S. Capozziello, S. Nojiri and S. D. Odintsov, Dark energy: The equation of state description versus scalar-tensor or modified gravity, Phys. Lett. B634 (2006) 93-100; S. Nojiri, S. D. Odintsov and D. Saez-Gomes, Cosmological reconstruction of realistic modified F(R) gravities, Phys. Lett. B681 (2009) 74-80.
[19] Bengochea, G. R.; Ferraro, R., Dark torsion as the cosmic speed-up, Phys. Rev. D, 79, 124019, (2005)
[20] Padmanabhan, T., Cosmological constant: The weight of the vacuum, Phys. Rep., 380, 235-320, (2003) · Zbl 1027.83544
[21] Weinberg, S., The cosmological constant problem, Rev. Mod. Phys., 61, 1-23, (1989) · Zbl 1129.83361
[22] Sahni, V.; Starobinsky, A. A., The case for a positive cosmological lambda term, Int. J. Mod. Phys. D, 9, 373-444, (2000)
[23] Zlatev, I.; Wang, L.-M.; Steinhardt, P. J., Quintessence, cosmic coincidence, and the cosmological constant, Phys. Rev. Lett., 82, 896-899, (1999)
[24] Boehmer, C. G.; Caldera-Cabral, G.; Lazkoz, R.; Maartens, R., Dynamics of dark energy with a coupling to dark matter, Phys. Rev. D, 78, 023505, (2008)
[25] Wetterich, C., The cosmon model for an asymptotically vanishing time dependent cosmological “‘constant”, Astron. Astrophys., 301, 321-328, (1995)
[26] Amendola, L., Scaling solutions in general nonminimal coupling theories, Phys. Rev. D, 60, 043501, (1999)
[27] Olivares, G.; Atrio-Barandela, F.; Pavon, D., Observational constraints on interacting quintessence models, Phys. Rev. D, 71, 063523, (2005)
[28] Oliveras, G.; Atrio-Barandela, F.; Pavon, D., Matter density perturbations in interacting quintessence models, Phys. Rev. D, 74, 043521, (2006)
[29] Das, S.; Corasaniti, P. S.; Khoury, J., Super-acceleration as signature of dark sector interaction, Phys. Rev. D, 73, 083509, (2006)
[30] Amendola, L.; Gasperini, M.; Piazza, F., SNLS data are consistent with acceleration at \(z = 3\), Phys. Rev. D, 74, 127302, (2006)
[31] Bolotin, Y. L.; Kostenko, A.; Lemets, O. A.; Yerokhin, D. A., Cosmological evolution with interaction between dark energy and dark matter, Int. J. Mod. Phys. D, 24, 3, 1530007, (2015) · Zbl 1310.83039
[32] Costa, A. A.; Xu, X. D.; Wang, B.; Ferreira, E. G. M.; Abdalla, E., Testing the interaction between dark energy and dark matter with planck data, Phys. Rev. D, 89, 10, 103531, (2014)
[33] Khurshudyan, M.; Myrzakulov, R., Phase space analysis of some interacting Chaplygin gas models, Eur. Phys. J. C, 77, 2, 65, (2017)
[34] Biswas, S. Kr.; Chakraborty, S., Dynamical systems analysis of an interacting dark energy model in the brane scenario, Gen. Relativ. Gravit., 47, 22, (2015) · Zbl 1317.83098
[35] Biswas, S. Kr.; Chakraborty, S., Interacting dark energy in f(T) cosmology: A dynamical system analysis, Int. J. Mod. Phys. D., 24, 7, 1550046, (2015) · Zbl 1320.83048
[36] Tamanini, N., Phenomenological models of dark energy interacting with dark matter, Phys. Rev. D, 92, 4, 043524, (2015)
[37] X. Chen, Y. Gong and E. N. Saridakis, Phase-space analysis of interacting phantom cosmology, 0904 (2009) 001, arXiv:0812.1117 [gr-qc].
[38] Harko, T.; Lobo, F. S. N., Irreversible thermodynamic description of interacting dark energy-dark matter cosmological models, Phys. Rev. D, 87, 4, 044018, (2013)
[39] Nunes, R. C.; Pan, S.; Saridakis, E. N., New constraints on interacting dark energy from cosmic chronometers, Phys. Rev. D, 94, 2, 023508, (2016)
[40] Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavon, D., Dark matter and dark energy interactions: Theoretical challenges, cosmological implications and observational signatures, Rep. Prog. Phys., 79, 9, 096901, (2016)
[41] Landim, R. C. G., Dynamical analysis for a vector-like dark energy, Eur. Phys. J. C, 76, 9, 480, (2016)
[42] Landim, R. C. G., Coupled dark energy: A dynamical analysis with complex scalar field, Eur. Phys. J. C, 76, 1, 31, (2016)
[43] Maeda, K., Brane quintessence, Phys. Rev. D, 64, 123525, (2001)
[44] Gonzalez-Diaz, P. F., Quintessence in brane cosmology, Phys. Lett. B, 481, 353-359, (2000) · Zbl 0960.83041
[45] Majumdar, A. S., From brane assisted inflation to quintessence through a single scalar field, Phys. Rev. D, 64, 083503, (2001)
[46] Nunes, N. J.; Copeland, E. J., Tracking quintessential inflation from brane worlds, Phys. Rev. D, 66, 043524, (2002)
[47] Sami, M.; Dadhich, N., Unifying brane world inflation with quintessence, TSPU Bull., 44, 7, 25-36, (2004)
[48] Gonzalez, T.; Matos, T.; Quiros, I.; Gonzalez, A. V., Self-interacting scalar field trapped in a Randall-Sundrum braneworld: The dynamical systems perspective, Phys. Lett. B, 676, 161-167, (2009)
[49] Leyva, Y.; Gonzalez, D.; Gonzalez, T.; Matos, T.; Quiros, I., Dynamics of a self-interacting scalar field trapped in the braneworld for a wide variety of self-interaction potentials, Phys. Rev. D, 80, 044026, (2009)
[50] Escobar, D.; Fadragas, C. R.; Leon, G.; Leyva, Y., Phase space analysis of quintessence fields trapped in a Randall-Sundrum braneworld: A refined study, Class. Quantum. Gravit., 29, 175005, (2012) · Zbl 1251.83062
[51] Dutta, J.; Zonunmawia, H., Complete cosmic scenario in the Randall-Sundrum braneworld from the dynamical systems perspective, Eur. Phys. J. Plus, 130, 11, 221, (2015)
[52] Copeland, E. J.; Liddle, A. R.; Wands, D., Exponential potentials and cosmological scaling solutions, Phys. Rev. D, 57, 4686-4690, (1998)
[53] Aguirregabiria, J. M.; Lazkoz, R., Tracking solutions in tachyon cosmology, Phys. Rev. D, 69, 123502, (2004)
[54] Lazkoz, R.; Leon, G.; Quiros, I., Quintom cosmologies with arbitrary potentials, Phys. Lett. B, 649, 103-110, (2007) · Zbl 1248.83165
[55] Fang, W.; Li, Y.; Zhang, K.; Lu, H. Qing, Exact analysis of scaling and dominant attractors beyond the exponential potential, Class. Quantum Grav., 26, 155005, (2009) · Zbl 1172.83350
[56] Leon, G., On the past asymptotic dynamics of non-minimally coupled dark energy, Class. Quantum Grav., 26, 035008, (2009) · Zbl 1159.83356
[57] G. Leon, P. Silveira and C. R. Fadragas, Phase-space of flat Friedmann-Robertson-Walker models with both a scalar field coupled to matter and radiation, arXiv:1009.0689 [gr-qc].
[58] Leon, G.; Fadragas, C. R., Cosmological Dynamical Systems, (2012), LAP Lambert Academic Publishing
[59] Campos, A.; Sopuerta, C. F., Evolution of cosmological models in the brane world scenario, Phys. Rev. D, 63, 104012, (2001)
[60] Campos, A.; Sopuerta, C. F., Bulk effects in the cosmological dynamics of brane world scenarios, Phys. Rev. D, 64, 104011, (2001)
[61] Coley, A. A., Dynamics of brane world cosmological models, Phys. Rev. D, 66, 023512, (2002)
[62] Coley, A. A., The dynamics of brane-world cosmological models, Can. J. Phys., 83, 475, (2005)
[63] Goheer, N.; Dunsby, P. K. S., Exponential potentials on the brane, Phys. Rev. D, 67, 103513, (2003)
[64] Goheer, N.; Dunsby, P. K. S., Brane world dynamics of inflationary cosmologies with exponential potentials, Phys. Rev. D, 66, 043527, (2002)
[65] Odintsov, S. D.; Oikonomou, V. K., Autonomous dynamical system approach for f(R) gravity, Phys. Rev. D, 96, 104049, (2017)
[66] Oikonomou, V. K., Autonomous dynamical system approach for inflationary Gauss-Bonnet modified Gravity, Int. J. Mod. Phys. D, 27, 5, 1850059, (2018)
[67] Odintsov, S. D.; Oikonomou, V. K., Dynamical systems perspective of cosmological finite-time singularities in f(R) gravity and interacting multifluid cosmology, Phys. Rev. D, 98, 024013, (2018)
[68] Kleidis, K.; Oikonomou, V. K., Autonomous dynamical system description of de Sitter evolution in scalar assisted \(f(R)\) — \(\phi\) gravity, Int. J. Geom. Meth. Mod. Phys., 15, 12, 1850212, (2018) · Zbl 1408.83038
[69] Odintsov, S. D.; Oikonomou, V. K., Study of finite-time singularities of loop quantum cosmology interacting multifluids, Phys. Rev. D, 97, 124042, (2018)
[70] Bahamonde, S.; Boehmer, C. G.; Carloni, S.; Copeland, E. J.; Fang, W.; Tamanini, N., Dynamical systems applied to cosmology: Dark energy and modified gravity, Phys. Rep., 775-777, 1-122, (2018) · Zbl 1404.83143
[71] Brax, P.; Van De Bruck, C., Cosmology and brane worlds: A review, Class. Quantum Gravity, 20, R201-R232, (2003) · Zbl 1033.83027
[72] D. Langlois, Cosmology of brane — worlds, arXiv:astro-ph/0403579.
[73] Maartens, R., Brane world gravity, Living Rev. Relativ., 7, 7, (2004) · Zbl 1071.83571
[74] Bowcock, P.; Charmousis, C.; Gregory, R., General brane cosmologies and their global space-time structure, Class. Quantum Grav., 17, 4745-4764, (2000) · Zbl 0988.83065
[75] Kaeonikhom, C.; Singleton, D.; Sushkov, S. V.; Yongram, N., Dynamics of Dirac-Born-Infeld dark energy interacting with dark matter, Phys. Rev. D, 86, 124049, (2012)
[76] Sahni, V.; Wang, L.-M., A new cosmological model of quintessence and dark matter, Phys. Rev. D, 62, 103517, (2000)
[77] V. Sahni and A. Starobinsky, The case for a positive cosmological Lambda term, Int. J. Mod. Phys. D9 (2000) 373-444; L. A. Urena-Lopez and T. Matos, A new cosmological tracker solution for quintessence, Phys. Rev. D62 (2000) 081302; S. A. Pavluchenko, Generality of inflation in closed cosmological models with some quintessence potentials, Phys. Rev. D67 (2003) 103518.
[78] Garcia-Salcedo, R.; Gonzalez, T.; Horta-Rangel, F. A.; Quiros, I.; Sanchez-Guzman, D., Introduction to the application of dynamical systems theory in the study of the dynamics of cosmological models of dark energy, Eur. J. Phys., 36, 2, 025008, (2015) · Zbl 1317.83101
[79] Demianski, M.; Piedipalumbo, E.; Sawant, D.; Amati, L., Cosmology with gamma-ray bursts: II Cosmography challenges and cosmological scenarios for the accelerated Universe, Astron. Astrophys., 598, A113, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.