×

Simulation of fluid dynamics through complicated networks of channels with cellular automata. (English) Zbl 1421.76019

MSC:

76B07 Free-surface potential flows for incompressible inviscid fluids
76S05 Flows in porous media; filtration; seepage
76M25 Other numerical methods (fluid mechanics) (MSC2010)
68U20 Simulation (MSC2010)
68Q80 Cellular automata (computational aspects)
76E20 Stability and instability of geophysical and astrophysical flows
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Stensholt, S.; Hope, S. M., Lattice Boltzmann method and channel flow, Eur. J. Phys., 37, 045003, (2016) · Zbl 1346.76163
[2] Ladd, A. J C.; Verberg, R., Lattice-Boltzmann simulations of particle-fluid suspensions, J. Stat. Phys., 104, 1191-1251, (2001) · Zbl 1046.76037
[3] Gao, J.; Xing, H.; Tian, Z.; Muhlhaus, H., Lattice Boltzmann modeling and evaluation of fluid flow in heterogeneous porous media involving multiple matrix constituents, Comput. Geosci., 62, 198-207, (2014)
[4] Chu, K. W.; Yu, A. B., Numerical simulation of complex particle-fluid flows, Powder Technol., 179, 104-114, (2008)
[5] Premoze, S.; Tasdizen, T.; Bigler, J.; Lefohn, A.; Whitaker, R. T., Particle-based simulation of fluids, Eurographics 2003, 22, 401-410, (2003)
[6] Zhou, Z. Y.; Kuang, S. B.; Chu, K. W.; Yu, A. B., Discrete particle simulation of particle-fluid flow: model formulations and their applicability, J. Fluid Mech., 661, 482-510, (2010) · Zbl 1205.76278
[7] Battaglia, O. R.; Fazio, C., 2D simulation of wave-particle coupling inspired by walking droplets, Eur. J. Phys., 39, (2018)
[8] Tartakovsky, A.; Meakin, P., Modeling of surface tension and contact angles with smoothed particle hydrodynamics, Phys. Rev. E, 72, 26301, (2005)
[9] Couder, Y.; Protiere, S.; Fort, E.; Boudaoud, A., Walking and orbiting dropelts, Nature, 437, 208, (2005)
[10] Itami, R. M., Simulating spatial dynamics:cellular automata theory, Landscape and Urban Planning, 30, 27-47, (1994)
[11] Margolus, N.; Toffoli, T., Cellular Automata Machines, 1, 967-993, (1987) · Zbl 0655.68055
[12] Argentini, G., A first approach for a possible cellular automaton model of fluids dynamic, New Technologies and Models, Information and Communication Technology Department Riello Group, Legnago (Verona), Italy, (2003)
[13] Margolus, N.; Tommaso, T.; Vichniac, G., Cellular-Automata supercomputer for fluid-dynamics modeling, Phys. Rev. Lett., 56, 1694-1696, (1986)
[14] Cattaneo, G.; Jocher, U., Cellular Automata for 2D and 3D fluid dynamics simulations, (2005)
[15] Knegjens, R., Simulation of a Wind Tunnel using Lattice Cellular Automata, (2008)
[16] Boldea, C., A particle cellular automata model for fluid simulations, Annals of University of Craiova, Math. Comp. Sci. Ser., 36, 35-41, (2009) · Zbl 1212.68096
[17] Bischof, G., Fluid dynamics simulation using cellular automata, (2012)
[18] Cirbus, J.; Podhoranyi, M., Cellular automata for the flow simulations on the Earth surface, optimization computation process, Appl. Math. Inf. Sci., 7, 2149-2158, (2013)
[19] Martin, O.; Odlysko, A. M.; Wolfman, F., Algebraic properties of cellular automata, Commun. Math. Phys., 93, 219-258, (1984) · Zbl 0564.68038
[20] Ilachinski, A., Cellular Automata: A Discrete Universe, 801, (2001), Singapore: World Scientific, Singapore · Zbl 1031.68081
[21] Kier, L. B.; Seybold, P. G.; Cheng, C., Modeling Chemical Systems using Cellular Automata. Ed., 179, (2005), Netherland: Springer, Netherland
[22] Miyamoto, H.; Sasaki, S., Simulating lava flows by an improved cellular automata method, Computer and Geoscience, 23, 283-292, (1997)
[23] Ermentrout, G. B.; Edelstein-Keshet, L., Cellular automata approaches to biological modeling, J. Theoretical Biology, 160, 97-133, (1993)
[24] Dreyfus-León, M.; Martínez-Olvera, R.; Hernandez-Walls, R., Numeric simulation of fishing effort and strategies (stochastic and Cartesian) using cellular automata, Ciencias Marinas, 37, 393-402, (2011)
[25] Wolfram, S., Cellular automata as models of complexity, Nature, 311, 419-424, (1984)
[26] Kuhn, T.; Woolley, O., (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.