Mantel test for spatial functional data. An application to infiltration curves. (English) Zbl 1421.62121

Summary: Statistics for spatial functional data is an emerging field in statistics which combines methods of spatial statistics and functional data analysis to model spatially correlated functional data. Checking for spatial autocorrelation is an important step in the statistical analysis of spatial data. Several statistics to achieve this goal have been proposed. The test based on the Mantel statistic is widely known and used in this context. This paper proposes an application of this test to the case of spatial functional data. Although we focus particularly on geostatistical functional data, that is functional data observed in a region with spatial continuity, the test proposed can also be applied with functional data which can be measured on a discrete set of areas of a region (areal functional data) by defining properly the distance between the areas. Based on two simulation studies, we show that the proposed test has a good performance. We illustrate the methodology by applying it to an agronomic data set.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62H20 Measures of association (correlation, canonical correlation, etc.)
62P30 Applications of statistics in engineering and industry; control charts
86A32 Geostatistics


R; MASS (R); geoR; fda (R)
Full Text: DOI


[1] Amato, U.; Antoniadis, B.; Feis, I., Dimension reduction in functional regression with applications, Comput. Stat. Data Anal., 50, 2422-2446, (2006) · Zbl 1445.62078
[2] Baladandayuthapani, V.; Mallick, B.; Hong, M.; Lupton, J.; Turner, N.; Caroll, R., Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinoginesis, Biometrics, 64, 64-73, (2008) · Zbl 1274.62715
[3] Berrendero, J.; Justel, A.; Svarc, M., Principal components for multivariate functional data, Comput. Stat. Data Anal., 55, 2619-2634, (2011) · Zbl 1464.62025
[4] Caballero, W.; Giraldo, R.; Mateu, J., A universal kriging approach for spatial functional data, Stoch. Environ. Res. Risk Assess., 27, 1553-1563, (2013)
[5] Comas, C.; Delicado, P.; Mateu, J., A second order approach to analyse spatial point patterns with functional marks, Test, 20, 503-523, (2011) · Zbl 1274.62359
[6] Chong, L.: Functional principal component and factor analysis of spatially correlated data. Ph.D Thesis, Boston University (2014)
[7] Delicado, P.; Giraldo, R.; Comas, C.; Mateu, J., Statistics for spatial functional data: some recent contributions, Environmetrics, 21, 224-239, (2010)
[8] Dray, S.; Dufour, A., The ade4 package: implementing the duality diagram for ecologists, J. Stat. Softw., 22, 1-20, (2007)
[9] Dutilleul, P.; Stockwell, J.; Frigon, D.; Legendre, P., The Mantel test versus Pearson’s correlation analysis: assessment of the differences for biological and environmental studies, Environmetrics, 5, 131-150, (2000)
[10] Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Springer, New York (2006) · Zbl 1119.62046
[11] Fortin, M., Dale, M.: Spatial Analysis: A Guide for Ecologist. Cambridge University Press, Cambridge (2005)
[12] Fortin, M.; Dale, M.; ver Hoef, J., Spatial analysis in ecology, Encycl. Environ., 4, 2051-2058, (2002)
[13] Guillas, S.; Lai, M., Bivariate splines for spatial functional regression models, J. Nonparametr. Stat., 22, 477-497, (2010) · Zbl 1189.62068
[14] Giraldo, R.; Delicado, P.; Mateu, J., Ordinary kriging for function-valued spatial data, Environ. Ecol. Stat., 18, 411-426, (2011)
[15] Giraldo, R.; Delicado, P.; Mateu, J., Hierarchical clustering of spatially correlated functional data, Stat. Neerl., 66, 403-421, (2012)
[16] Giraldo, R., Cokriging based on curves: prediction and estimation of the prediction variance, InterStat, 2, 1-30, (2014)
[17] Gromenko, O.: Spatially Indexed Functional Data. Ph.D Thesis, Utah University (2013) · Zbl 1400.62064
[18] Horvath, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer, New York (2012) · Zbl 1279.62017
[19] Ignaccolo, R.; Mateu, J.; Giraldo, R., Kriging with external drift for functional data for air quality monitoring, Stoch. Environ. Res. Risk Assess., 28, 1171-1186, (2014)
[20] Jacques, J.; Preda, C., Functional clustering: a survey, Adv. Data Anal. Classif., 8, 231-255, (2014) · Zbl 1414.62018
[21] Kroese, D., Taimre, T., Botev, Z.: Handbook of Monte Carlo Methods. Wiley, New York (2011) · Zbl 1213.65001
[22] Legendre, P.; Fortin, M., Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data, Mol. Ecol. Resour., 10, 831-844, (2010)
[23] Lehmann, E., Romano, J.: Testing Statistical Hyphotheses, 3rd edn. Springer, New York (2005)
[24] Lichstein, J., Multiple regression on distance matrices: a multivariate spatial analysis tool, Plant Ecol., 188, 117-131, (2007)
[25] Lindquist, A., The statistical analysis of fMRI data, Stat. Sci., 23, 439-464, (2008) · Zbl 1329.62296
[26] Mantel, N., The detection of disease clustering and a generalized regression approach, Cancer Res., 27, 209-220, (1967)
[27] Martins, A.; Moura, E.; Camacho-Tamayo, J., Spatial variability of infiltration and its relationship to some physical properties, Ingeniería e Investigación, 30, 116-123, (2010)
[28] Martins, A.; Moura, E.; Camacho-Tamayo, J., Spatial analysis of infiltration in an oxisol of the eastern plains of Colombia, Chil. J. Agric. Res., 72, 404-410, (2012)
[29] Parhi, P., Another look at Kostiakov, modified Kostiakov and revised modified Kostiakov infiltration models in water resources applications, Int. J. Agric. Sci., 4, 138-142, (2014)
[30] Plant, R.: Spatial Data Analysis in Ecology and Agriculture Using R. CRC press, Boca Raton (2012)
[31] R Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2013)
[32] Ramsay, J., Silverman, B.: Functional Data Analysis, 2nd edn. Springer, New York (2005) · Zbl 1079.62006
[33] Ribeiro, P.; Diggle, P., geoR: a package for geostatistical analysis, R-NEWS, 1, 15-18, (2001)
[34] Romano, E.; Mateu, J.; Giraldo, R., On the performance of two clustering methods for spatial functional data, Adv. Stat. Anal., 99, 467-492, (2015) · Zbl 1443.62187
[35] Ruiz-Medina, M.; Espejo, R.; Romano, E., Spatial functional normal mixed effect approach for curve classification, Adv. Data Anal. Classif., 8, 257-285, (2014) · Zbl 1414.62270
[36] Rodríguez-Vásquez, A.; Aristizábal-Castillo, A.; Camacho-Tamayo, J., Fast methods for spatially correlated multilevel functional data, Biostatistics, 11, 177-194, (2010)
[37] Schabenberger, O., Gotway, C.: Statistical Methods for Spatial Data Analysis. Chapman & Hall, Boca Raton (2004) · Zbl 1068.62096
[38] Staicu, A.; Crainiceanu, C.; Carroll, R., Spatial variability of Philip and Kostiakov infiltration models in an Andic soil, Eng. Agric. Jaboticabal, 28, 64-75, (2008)
[39] Stoyan, D., Stoyan, H.: Analysis of Variance for Functional Data. Chapman & Hall, London (2013) · Zbl 1289.74096
[40] Venables, W., Ripley, B.: Modern Applied Statistics with S. Springer, New York (2002) · Zbl 1006.62003
[41] Wall, M., A close look at the spatial structure implied by the CAR and SAR models, J. Stat. Plan. Inference, 121, 311-324, (2004) · Zbl 1036.62097
[42] Yao, F.; Muller, H.; Wang, J., Functional data analysis for sparse longitudinal data, J. Am.Stat. Assoc., 100, 577-590, (2005) · Zbl 1117.62451
[43] Zhang, T.: Fractals, Random Shapes, and Point Fields : Methods of Geometrical Statistics. Wiley, Chichester (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.