×

The influence of distant boundaries on the solvation of charged particles. (English) Zbl 1420.78005

Summary: The long-ranged nature of the Coulomb potential requires a proper accounting for the influence of even distant electrostatic boundaries in the determination of the solvation free energy of a charged solute. We introduce an exact rewriting of the free energy change upon charging a solute that explicitly isolates the contribution from these boundaries and quantifies the impact of the different boundaries on the free energy. We demonstrate the importance and advantages of appropriately referencing the electrostatic potential to that of the vacuum through the study of several simple model charge distributions, for which we can isolate an analytic contribution from the boundaries that can be readily evaluated in computer simulations of molecular systems. Finally, we highlight that the constant potential of the bulk dielectric phase – the Bethe potential – cannot contribute to the solvation thermodynamics of a single charged solute when the charge distributions of the solvent and solute do not overlap in relevant configurations. But when the charge distribution of a single solute can overlap with the intramolecular charge distribution of solvent molecules, as is the case in electron holography, for example, the Bethe potential is needed when comparing to experiment. Our work may also provide insight into the validity of “extra thermodynamic assumptions” traditionally made during the experimental determination of single ion solvation free energies.

MSC:

78A35 Motion of charged particles
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford, New York (1987) · Zbl 0703.68099
[2] Ashbaugh, H.S.: Convergence of molecular and macroscopic continuum descriptions of ion hydration. J. Phys. Chem. B 104, 7235-7238 (2000) · doi:10.1021/jp0015067
[3] Baer, M.D., Stern, A.C., Levin, Y., Tobias, D.J., Mundy, C.J.: Electrochemical surface potential due to classical point charge models drives anion adsorption to the air-water interface. J. Phys. Chem. Lett. 3, 1565-1570 (2012) · doi:10.1021/jz300302t
[4] Bardhan, J.P., Jungwirth, P., Makowski, L.: Affine-response model of molecular solvation of ions: accurate predictions of asymmetric charging free energies. J. Chem. Phys. 137, 124101 (2012) · doi:10.1063/1.4752735
[5] Beck, T.L.: The influence of water interfacial potentials on ion hydration in bulk water and near interfaces. Chem. Phys. Lett. 561-562, 1-13 (2013) · doi:10.1016/j.cplett.2013.01.008
[6] Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269-6271 (1987) · doi:10.1021/j100308a038
[7] Berne, B.J., Thirumalai, D.: On the simulation of quantum systems: path integral methods. Annu. Rev. Phys. Chem. 37, 401-424 (1986) · doi:10.1146/annurev.pc.37.100186.002153
[8] Bethe, H.: Theorie der beugung von elektronen an kristallen. Ann. Phys. F4(87), 55-129 (1928) · doi:10.1002/andp.19283921704
[9] Bischak, C.G., Hetherington, C.L., Wu, H., Aloni, S., Ogletree, D.F., Limmer, D.T., Ginsberg, N.S.: Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028-1033 (2017) · doi:10.1021/acs.nanolett.6b04453
[10] Canchi, D.R., García, A.E.: Cosolvent effects on protein stability. Annu. Rev. Phys. Chem. 64, 273-93 (2013) · doi:10.1146/annurev-physchem-040412-110156
[11] Chandler, D., Leung, K.: Excess electrons in liquids: geometrical perspectives. Annu. Rev. Phys. Chem. 45, 557-591 (1994) · doi:10.1146/annurev.pc.45.100194.003013
[12] Chang, T.M., Dang, L.X.: Recent advances in molecular simulations of ion solvation at liquid interfaces. Chem. Rev. 106, 1305-1322 (2006) · doi:10.1021/cr0403640
[13] Chaudhari, M.I., Pratt, L.R., Rempe, S.B.: Utility of chemical computations in predicting solution free energies of metal ions. Mol. Simul. 44, 110-116 (2018) · doi:10.1080/08927022.2017.1342127
[14] Chaudhari, M.I., Rempe, S.B., Pratt, L.R.: Quasi-chemical theory of F(aq): The “no split occupancies rule” revisited. J. Chem. Phys. 147, 161728 (2017) · doi:10.1063/1.4986244
[15] Chen, M., Ko, H.H., Remsing, R.C., Andrade, M.F.C., Santra, B., Sun, Z., Selloni, A., Car, R., Klein, M.L., Perdew, J.P., Wu, X.: Ab initio theory and modeling of water. Proc. Natl. Acad. Sci. USA 114(41), 10846-10851 (2017). https://doi.org/10.1073/pnas.1712499114 · doi:10.1073/pnas.1712499114
[16] Collins, K.D.: Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions. Biophys. Chem. 167, 43-59 (2012) · doi:10.1016/j.bpc.2012.04.002
[17] Cox, S.J., Geissler, P.L.: Interfacial ion solvation: obtaining the thermodynamic limit from molecular simulations. J. Chem. Phys. 148, 222823 (2018) · doi:10.1063/1.5020563
[18] Duignan, T., Schenter, G.K., Galib, M., Baer, M.D., Wilhelm, J., Hutter, J., Ben, M.D., Zhao, X.S., Mundy, C.J.: Hydration structure of sodium and potassium ions with DFT-MD (2018). https://doi.org/10.26434/chemrxiv.7466426.v1
[19] Duignan, T.T., Baer, M.D., Mundy, C.J.: Understanding the scale of the single ion free energy: a critical test of the tetra-phenyl arsonium and tetra-phenyl borate assumption. J. Chem. Phys. 148, 222819 (2018) · doi:10.1063/1.5020171
[20] Duignan, T.T., Baer, M.D., Schenter, G.K., Mundy, C.J.: Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions. J. Chem. Phys. 147, 161716 (2017) · doi:10.1063/1.4994912
[21] Duignan, T.T., Baer, M.D., Schenter, G.K., Mundy, C.J.: Real single ion solvation free energies with quantum mechanical simulation. Chem. Sci. 8, 6131-6140 (2017) · doi:10.1039/C7SC02138K
[22] England, J.L., Haran, G.: Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. Annu. Rev. Phys. Chem. 62, 257-277 (2011) · doi:10.1146/annurev-physchem-032210-103531
[23] Euwema, R.N., Surratt, G.T.: The absolute positions of calculated energy bands. J. Phys. Chem. Solids 36, 67-71 (1975) · doi:10.1016/0022-3697(75)90115-8
[24] Figueirido, F., Buono, G.S.D., Levy, R.M.: On finite-size effects in computer simulations using the ewald potential. J. Chem. Phys. 103, 6133-6142 (1995) · doi:10.1063/1.470721
[25] Geissler, P.L.: Water interfaces, solvation, and spectroscopy. Annu. Rev. Phys. Chem. 64, 317-37 (2013) · doi:10.1146/annurev-physchem-040412-110153
[26] Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Elsevier Ltd, London (2006) · Zbl 0756.00004
[27] Harder, E., Roux, B.: On the origin of the electrostatic potential difference at a liquid-vacuum interface. J. Chem. Phys. 129, 234706 (2008) · doi:10.1063/1.3027513
[28] Harris, F.E.: Hartee-Fock studies of electronic structures of crystalline solids. In: Theoretical Chemistry: Advances and Perspectives, vol. 1. Academic Press, New York (1975)
[29] Hofer, T.S., Hünenberger, P.H.: Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration. J. Chem. Phys. 148, 222814 (2018) · doi:10.1063/1.5000799
[30] Horváth, L., Beu, T., Manghi, M., Palmeri, J.: The vapor-liquid interface potential of (multi)polar fluids and its influence on ion solvation. J. Chem. Phys. 138, 154702 (2013) · doi:10.1063/1.4799938
[31] Hummer, G., Pratt, L.R., García, A.E.: Free energy of ionic hydration. J. Phys. Chem. 100, 1206-1215 (1996) · doi:10.1021/jp951011v
[32] Hummer, G., Pratt, L.R., García, A.E.: Ion sizes and finite-size corrections for ionic-solvation free energies. J. Chem. Phys. 107(21), 9275-9277 (1997) · doi:10.1063/1.475219
[33] Hummer, G., Pratt, L.R., García, A.E.: Molecular theories and simulation of ions and polar molecules in water. J. Phys. Chem. A 102, 7885-7895 (1998) · doi:10.1021/jp982195r
[34] Hummer, G., Pratt, L.R., García, A.E., Berne, B.J., Rick, S.W.: Electrostatic potentials and free energies of solvation of polar and charged molecules. J. Phys. Chem. B 101, 3017-3020 (1997) · doi:10.1021/jp964037a
[35] Hummer, G., Pratt, L.R., García, A.E., Garde, S., Berne, B.J., Rick, S.W.: Reply to comment on “electrostatic potentials and free energies of solvation of polar and charged molecules”. J. Phys. Chem. B 102, 3841-3843 (1998) · doi:10.1021/jp980145g
[36] Hunenberger, P., Reif, M.: Single-Ion Solvation: Experimental and Theoretical Approaches to Elusive Thermodynamic Properties, Theoretical and Computational Chemistry. RCS, London (2011)
[37] Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999) · Zbl 0920.00012
[38] Kang, Q., Vernisse, L., Remsing, R.C., Thenuwara, A.C., Shumlas, S.L., McKendry, I.G., Klein, M.L., Borguet, E., Zdilla, M.J., Strongin, D.R.: Effect of interlayer spacing on the activity of layered manganese oxide bilayer catalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 139, 1863-1870 (2017) · doi:10.1021/jacs.6b09184
[39] Kastenholz, M.A., Hünenberger, P.H.: Computation of methodology-independent ionic solvation free energies from molecular simulations. i. the electrostatic potential in molecular liquids. J. Chem. Phys. 124, 124106 (2006) · doi:10.1063/1.2172593
[40] Kastenholz, M.A., Hünenberger, P.H.: Computation of methodology-independent ionic solvation free energies from molecular simulations. ii. the hydration free energy of the sodium cation. J. Chem. Phys. 124, 224501 (2006) · doi:10.1063/1.2201698
[41] Kathmann, S.M., Kuo, I.F.W., Mundy, C.J., Schenter, G.K.: Understanding the surface potential of water. J. Phys. Chem. B 115, 4369-4377 (2011) · doi:10.1021/jp1116036
[42] Kholopov, E.V.: Mean potential of bethe in the classical problem of calculating bulk electrostatic potentials in crystals. Phys. Stat. Sol. (b) 243, 1165-1181 (2006) · doi:10.1002/pssb.200541082
[43] Kleinman, L.: Comment on the average potential of a Wigner solid. Phys. Rev. B 24, 7412-7414 (1981) · doi:10.1103/PhysRevB.24.7412
[44] Knipping, E.M., Lakin, M.J., Foster, K.L., Jungwirth, P., Tobias, D.J., Gerber, R.B., Dabdub, D., Finlayson-Pitts, B.J.: Experiments and simulations of ion-enhanced interfacial chemistry on aqueous nacl aerosols. Science 288, 301-306 (2000) · doi:10.1126/science.288.5464.301
[45] Leung, K., Marsman, M.: Energies of ions in water and nanopores within density functional theory. J. Chem. Phys. 127, 154722 (2007) · doi:10.1063/1.2772244
[46] Leung, K., Rempe, S.B., von Lilienfeld, O.A.: Ab initio molecular dynamics calculations of ion hydration free energies. J. Chem. Phys. 130, 204507 (2009) · doi:10.1063/1.3137054
[47] Lovett, R., Stillinger, F.H.: Ion-pair theory of concentrated electrolytes. ii. approximate dielectric response calculation. J. Chem. Phys. 48(9), 3869-3884 (1968) · doi:10.1063/1.1669710
[48] Makov, G., Payne, M.C.: Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014-4022 (1995) · doi:10.1103/PhysRevB.51.4014
[49] McCartney, M.R., Smith, D.J.: Electron holography: phase imaging with nanometer resolution. Annu. Rev. Mater. Res. 37, 729-767 (2007) · doi:10.1146/annurev.matsci.37.052506.084219
[50] Moreira, L.A., Boström, M., Ninham, B.W., Biscaia, E.C., Tavares, F.W.: Hofmeister effects: Why protein charge, ph titration and protein precipitation depend on the choice of background salt solution. Colloids and Surfaces A: Physicochem. Eng. Aspects 282-283, 457-463 (2006)
[51] Mukhopadhyay, A., Fenley, A.T., Tolokh, I.S., Onufriev, A.V.: Charge hydration asymmetry: the basic prinicple and how to use it to test and improve water models. J. Phys. Chem. B 116, 9776-9783 (2012) · doi:10.1021/jp305226j
[52] Netz, R.R., Horinek, D.: Progress in modeling of ion effects at the vapor/water interface. Annu. Rev. Phys. Chem. 63, 401-18 (2012) · doi:10.1146/annurev-physchem-032511-143813
[53] Pollard, T.P., Beck, T.L.: Re-examining the tetraphenyl-arsonium/tetraphenyl-borate (TATB) hypothesis for single-ion solvation free energies. J. Chem. Phys. 148, 222830 (2018) · doi:10.1063/1.5024209
[54] Pratt, L.R.: Contact potentials of solution interfaces: Phase equilibrium and interfacial electric fields. J. Phys. Chem. 96, 25-33 (1992) · doi:10.1021/j100180a010
[55] Prozorov, T., Almeida, T.P., Kovács, A., Dunin-Borkowski, R.E.: Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid. J. R. Soc. Interface 14, 20170464 (2017) · doi:10.1098/rsif.2017.0464
[56] Rajamani, S., Ghosh, T., Garde, S.: Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior. J. Chem. Phys. 120, 4457-4466 (2004) · doi:10.1063/1.1644536
[57] Reif, M.M., Hünenberger, P.H.: Origin of asymmetric solvation effects for ions in water and organic solvents investigated using molecular dynamics simulations: the swain acity-basity scale revisited. J. Phys. Chem. B 120, 8485-8517 (2016) · doi:10.1021/acs.jpcb.6b02156
[58] Remsing, R.C., Baer, M.D., Schenter, G.K., Mundy, C.J., Weeks, J.D.: The role of broken symmetry in solvation of a spherical cavity in classical and quantum water models. J. Phys. Chem. Lett. 5, 2767-2774 (2014) · doi:10.1021/jz501067w
[59] Remsing, R.C., Duignan, T.T., Baer, M.D., Schenter, G.K., Mundy, C.J., Weeks, J.D.: Water lone pair delocalization in classical and quantum descriptions of the hydration of model ions. J. Phys. Chem. B 122, 3519-3527 (2018) · doi:10.1021/acs.jpcb.7b10722
[60] Remsing, R.C., Klein, M.L.: Solvation dynamics in water confined within layered manganese dioxide. Chem. Phys. Lett. 683, 478-482 (2017) · doi:10.1016/j.cplett.2017.02.082
[61] Remsing, R.C., McKendry, I.G., Strongin, D.R., Klein, M.L., Zdilla, M.J.: Frustrated solvation structures can enhance electron transfer rates. J. Phys. Chem. Lett. 6, 4804-4808 (2015) · doi:10.1021/acs.jpclett.5b02277
[62] Remsing, R.C., Rodgers, J.M., Weeks, J.D.: Deconstructing classical water models at interfaces and in bulk. J. Stat. Phys. 145, 313-334 (2011) · Zbl 1231.82080 · doi:10.1007/s10955-011-0299-3
[63] Remsing, R.C., Weeks, J.D.: Hydrophobicity scaling of aqueous interfaces by an electrostatic mapping. J. Phys. Chem. B 119, 9268-9277 (2015) · doi:10.1021/jp509903n
[64] Remsing, R.C., Weeks, J.D.: Role of local response in ion solvation: born theory and beyond. J. Phys. Chem. B 120, 6238-6249 (2016) · doi:10.1021/acs.jpcb.6b02238
[65] Rodgers, J.M., Weeks, J.D.: Accurate thermodynamics for short-ranged truncations of coulomb interactions in site-site molecular models. J. Chem. Phys. 131, 244108 (2009) · doi:10.1063/1.3276729
[66] Ross, F.M.: Opportunities and challenges in liquid cell electron microscopy. Science 350(6267), aaa9886 (2015) · doi:10.1126/science.aaa9886
[67] Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Dover Publications, Inc, New York (2002)
[68] Scheu, R., Rankin, B.M., Chen, Y., Jena, K.C., Ben-Amotz, D., Roke, S.: Charge asymmetry at aqueous hydrophobic interfaces and hydration shells. Angew. Chem. Int. Ed. Engl. 53(36), 9560-3 (2014). https://doi.org/10.1002/anie.201310266 · doi:10.1002/anie.201310266
[69] Shi, Y., Beck, T.L.: Length scales and interfacial potentials in ion hydration. J. Chem. Phys. 139, 044504 (2013) · doi:10.1063/1.4814070
[70] Simon, P., Lichte, H., Formanek, P., Lehmann, M., Huhle, R., Carrillo-Cabrera, W., Harscher, A., Ehrlich, H.: Electron holography of biological samples. Micron 39, 229-256 (2008) · doi:10.1016/j.micron.2006.11.012
[71] Sprik, M., Klein, M.L.: Application of path integral simulations to the study of electron solvation in polar fluids. Comput. Phys. Rep. 7, 147-166 (1988) · doi:10.1016/0167-7977(88)90001-9
[72] Stillinger, F.H., Lovett, R.: General restriction on the distribution of ions in electrolytes. J. Chem. Phys. 49(5), 1991-1994 (1968) · doi:10.1063/1.1670358
[73] Stillinger, F.H., Lovett, R.: Ion-pair theory of concentrated electrolytes. i. basic concepts. J. Chem. Phys. 48(9), 3858-3868 (1968) · doi:10.1063/1.1669709
[74] Tobias, D.J., Stern, A.C., Baer, M.D., Levin, Y., Mundy, C.J.: Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces. Annu. Rev. Phys. Chem. 64, 339-59 (2013). https://doi.org/10.1146/annurev-physchem-040412-110049 · doi:10.1146/annurev-physchem-040412-110049
[75] Weeks, J.D., Chandler, D., Andersen, H.C.: Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237-5247 (1971) · doi:10.1063/1.1674820
[76] Wilson, M.A., Pohorille, A., Pratt, L.R.: Comment on “study on the liquid-vaport interface of water. i. simulation results of thermodynamics properties and orientational structure”. J. Chem. Phys. 90, 5211-5213 (1989) · doi:10.1063/1.456536
[77] Zangwill, A.: Modern Electrodynamics. Cambridge University Press, Cambridge (2013) · Zbl 1351.78001
[78] Zhang, Z., Remsing, R.C., Chakraborty, H., Gao, W., Yuan, G., Klein, M.L., Ren, S.: Light-induced dilation in nanosheets of charge-transfer complexes. Proc. Natl. Acad. Sci. USA 115, 3776-3781 (2018) · doi:10.1073/pnas.1800234115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.