zbMATH — the first resource for mathematics

Getting CICY high. (English) Zbl 1420.14002
Summary: Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low \(h^{1, 1}\) geometries for training and validate on geometries with large \(h^{1, 1}\). Neural networks and support vector machines successfully predict trends in the number of Kähler parameters of CICY threefolds. The numerical accuracy of machine learning improves upon seeding the training set with a small number of samples at higher \(h^{1, 1}\).

14-04 Software, source code, etc. for problems pertaining to algebraic geometry
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI
[1] Candelas, P.; Horowitz, G. T.; Strominger, A.; Witten, E., Vacuum configurations for superstrings, Nucl. Phys. B, 258, 46-74, (1985)
[2] Greene, B. R.; Kirklin, K. H.; Miron, P. J.; Ross, G. G., A three generation superstring model. 1. Compactification and discrete symmetries, Nucl. Phys. B, 278, 667-693, (1986)
[3] Braun, V.; He, Y.-H.; Ovrut, B. A.; Pantev, T., A Heterotic standard model, Phys. Lett. B, 618, 252-258, (2005) · Zbl 1247.81349
[4] Braun, V.; He, Y.-H.; Ovrut, B. A.; Pantev, T., The exact MSSM spectrum from string theory, J. High Energy Phys., 05, Article 043 pp., (2006)
[5] Bouchard, V.; Donagi, R., An SU(5) heterotic standard model, Phys. Lett. B, 633, 783-791, (2006) · Zbl 1247.81348
[6] Anderson, L. B.; He, Y.-H.; Lukas, A., Heterotic compactification, an algorithmic approach, J. High Energy Phys., 0707, Article 049 pp., (2007)
[7] Anderson, L. B.; He, Y.-H.; Lukas, A., Monad bundles in heterotic string compactifications, J. High Energy Phys., 0807, Article 104 pp., (2008)
[8] Anderson, L. B.; Gray, J.; Lukas, A.; Palti, E., Two hundred heterotic standard models on smooth Calabi-Yau threefolds, Phys. Rev. D, 84, Article 106005 pp., (2011)
[9] Anderson, L. B.; Gray, J.; Lukas, A.; Palti, E., Heterotic line bundle standard models, J. High Energy Phys., 1206, Article 113 pp., (2012) · Zbl 1397.81406
[10] Anderson, L. B.; Constantin, A.; Gray, J.; Lukas, A.; Palti, E., A comprehensive scan for heterotic SU(5) GUT models, J. High Energy Phys., 01, Article 047 pp., (2014)
[11] Constantin, A.; He, Y.-H.; Lukas, A., Counting string theory standard models · Zbl 1416.81128
[12] Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom., 3, 493-545, (1994) · Zbl 0829.14023
[13] Batyrev, V. V.; Borisov, L. A., On Calabi-Yau complete intersections in toric varieties · Zbl 0908.14015
[14] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209-1230, (2002) · Zbl 1017.52007
[15] Altman, R.; Gray, J.; He, Y.-H.; Jejjala, V.; Nelson, B. D., A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list, J. High Energy Phys., 02, Article 158 pp., (2015) · Zbl 1388.53071
[16] Altman, R.; Gray, J.; He, Y.-H.; Jejjala, V.; Nelson, B. D., Toric Calabi-Yau database
[17] He, Y.-H.; Jejjala, V.; Pontiggia, L., Patterns in Calabi-Yau distributions, Commun. Math. Phys., 354, 477-524, (2017) · Zbl 1376.81059
[18] He, Y.-H., Deep-learning the landscape, (2017), arXiv preprint
[19] He, Y.-H., Machine-learning the string landscape, Phys. Lett. B, 774, 564-568, (2017)
[20] He, Y.-H., The Calabi-Yau landscape: from geometry, to physics, to machine-learning
[21] Bull, K.; He, Y.-H.; Jejjala, V.; Mishra, C., Machine learning cicy threefolds, Phys. Lett. B, 785, 65-72, (2018)
[22] Rudelius, T., Learning to inflate, (2018), arXiv preprint
[23] Krefl, D.; Seong, R.-K., Machine learning of Calabi-Yau volumes, Phys. Rev. D, 96, Article 066014 pp., (2017)
[24] Klaewer, D.; Schlechter, L., Machine learning line bundle cohomologies of hypersurfaces in toric varieties, (2018), arXiv preprint · Zbl 1406.14001
[25] Wang, Y.-N.; Zhang, Z., Learning non-higgsable gauge groups in 4d f-theory, (2018), arXiv preprint
[26] Ruehle, F., Evolving neural networks with genetic algorithms to study the string landscape, J. High Energy Phys., 2017, Article 38 pp., (2017) · Zbl 1381.83128
[27] Liu, J., Artificial neural network in cosmic landscape, J. High Energy Phys., 2017, Article 149 pp., (2017) · Zbl 1383.85016
[28] Mütter, A.; Parr, E.; Vaudrevange, P. K., Deep learning in the heterotic orbifold landscape, (2018), arXiv preprint · Zbl 1409.81099
[29] Carifio, J.; Halverson, J.; Krioukov, D.; Nelson, B. D., Machine learning in the string landscape, J. High Energy Phys., 2017, Article 157 pp., (2017) · Zbl 1382.81155
[30] Carifio, J.; Cunningham, W. J.; Halverson, J.; Krioukov, D.; Long, C.; Nelson, B. D., Vacuum selection from cosmology on networks of string geometries
[31] Abel, S.; Rizos, J., Genetic algorithms and the search for viable string vacua, J. High Energy Phys., 2014, Article 10 pp., (2014)
[32] Halverson, J.; Ruehle, F., Computational complexity of vacua and near-vacua in field and string theory, (2018), arXiv preprint
[33] Altman, R.; Carifio, J.; Halverson, J.; Nelson, B. D., Estimating Calabi-Yau hypersurface and triangulation counts with equation learners, (2018), arXiv preprint · Zbl 1414.83080
[34] Braun, V., On free quotients of complete intersection Calabi-Yau manifolds, J. High Energy Phys., 04, Article 005 pp., (2011) · Zbl 1250.14026
[35] Candelas, P.; Dale, A. M.; Lutken, C. A.; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys. B, 298, 493, (1988)
[36] Schöller, F.; Skarke, H., All weight systems for Calabi-Yau fourfolds from reflexive polyhedra
[37] Taylor, W.; Wang, Y.-N., Scanning the skeleton of the 4D F-theory landscape, J. High Energy Phys., 01, Article 111 pp., (2018) · Zbl 1384.83066
[38] Hubsch, T., Calabi-Yau Manifolds: A Bestiary for Physicists, (1994), World Scientific: World Scientific Singapore · Zbl 0771.53002
[39] Lukas, A.; Anderson, L.; Gray, J.; He, Y.-H.; Lee, S.-J. L., The cicy list including Hodge number data, (2007), available at
[40] Green, P. S.; Lütken, C.; Hübsch, T., All Hodge numbers of all complete intersection Calabi-Yau manifolds, Class. Quantum Gravity, 6, 105-124, (1987) · Zbl 0657.53063
[41] Candelas, P.; Davies, R., New Calabi-Yau manifolds with small Hodge numbers, Fortschr. Phys., 58, 383-466, (2010) · Zbl 1194.14062
[42] Candelas, P.; Constantin, A., Completing the web of \(Z_3\) - quotients of complete intersection Calabi-Yau manifolds, Fortschr. Phys., 60, 345-369, (2012) · Zbl 1243.81147
[43] Candelas, P.; Constantin, A.; Mishra, C., Hodge numbers for cicys with symmetries of order divisible by 4, Fortschr. Phys., 64, 463-509, (2016) · Zbl 1339.14023
[44] Constantin, A.; Gray, J.; Lukas, A., Hodge numbers for all cicy quotients, J. High Energy Phys., 2017, Article 1 pp., (2017) · Zbl 1373.14038
[45] Mishra, C., Calabi-Yau Manifolds, Discrete Symmetries and String Theory, (2017), PhD thesis
[46] Lukas, A.; Mishra, C., Discrete symmetries of complete intersection Calabi-Yau manifolds, (2017), arXiv preprint
[47] Candelas, P.; Mishra, C., Highly symmetric quintic quotients, Fortschr. Phys., 66, Article 1800017 pp., (2018)
[48] Anderson, L. B.; Gao, X.; Gray, J.; Lee, S.-J., Fibrations in cicy threefolds, J. High Energy Phys., 2017, Article 77 pp., (2017) · Zbl 1383.83147
[49] The maximally favorable CICY list
[50] Gray, J.; Haupt, A. S.; Lukas, A., All complete intersection Calabi-Yau four-folds, J. High Energy Phys., 07, Article 070 pp., (2013) · Zbl 1342.14086
[51] Anderson, L. B.; Apruzzi, F.; Gao, X.; Gray, J.; Lee, S.-J., A new construction of Calabi-Yau manifolds: generalized cicys, Nucl. Phys. B, 906, 441-496, (2016) · Zbl 1334.14023
[52] Candelas, P.; Lynker, M.; Schimmrigk, R., Calabi-Yau manifolds in weighted p4, Nucl. Phys. B, 341, 383-402, (1990) · Zbl 0962.14029
[53] Jejjala, V.; Kar, A.; Parrikar, O., Deep learning the hyperbolic volume of a knot
[54] Valiant, L. G., A Theory of the Learnable, (1984) · Zbl 0587.68077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.