Delta-hedging longevity risk under the M7-M5 model: the impact of cohort effect uncertainty and population basis risk. (English) Zbl 1419.91390

Summary: In a recent project commissioned by the Institute and Faculty of Actuaries and the Life and Longevity Markets Association, a two-population mortality model called the M7-M5 model is developed and recommended as an industry standard for the assessment of population basis risk. In this paper, we contribute a delta hedging strategy for use with the M7-M5 model, taking into account of not only period effect uncertainty but also cohort effect uncertainty and population basis risk. To enhance practicality, the hedging strategy is formulated in both static and dynamic settings, and its effectiveness can be evaluated in terms of either variance or 1-year ahead value-at-risk (the latter is highly relevant to solvency capital requirements). Three real data illustrations are constructed to demonstrate (1) the impact of population basis risk and cohort effect uncertainty on hedge effectiveness, (2) the benefit of dynamically adjusting a delta longevity hedge, and (3) the relationship between risk premium and hedge effectiveness.


91B30 Risk theory, insurance (MSC2010)


Full Text: DOI


[1] Blake, D.; Cairns, A. J.; Dowd, K., Living with mortality: Longevity bonds and other mortality-linked securities, Br. Actuar. J., 12, 1, 153-197, (2006)
[2] Cairns, A. J., Modelling and management of longevity risk: Approximations to survivor functions and dynamic hedging, Insurance Math. Econom., 49, 3, 438-453, (2011) · Zbl 1230.91068
[3] Cairns, A. J., Robust hedging of longevity risk, J. Risk Insurance, 80, 3, 621-648, (2013)
[4] Cairns, A. J.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, J. Risk Insurance, 73, 4, 687-718, (2006)
[5] Cairns, A. J.; Blake, D.; Dowd, K., Modelling and management of mortality risk: A review, Scand. Actuar. J., 2008, 2-3, 79-113, (2008) · Zbl 1224.91048
[6] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from England & Wales and the United States, N. Am. Actuar. J., 13, 1, 1-35, (2009)
[7] Cairns, A. J.; Dowd, K.; Blake, D.; Coughlan, G. D., Longevity hedge effectiveness: A decomposition, Quant. Finance, 14, 2, 217-235, (2014) · Zbl 1294.91072
[8] Coughlan, G., Epstein, D., Sinha, A., Honig, P., 2007. q-Forwards: Derivatives for transferring longevity and mortality risk. Technical report.
[9] Coughlan, G. D.; Khalaf-Allah, M.; Ye, Y.; Kumar, S.; Cairns, A. J.; Blake, D.; Dowd, K., Longevity hedging 101, N. Am. Actuar. J., 15, 2, 150-176, (2011)
[10] Dahl, M.; Glar, S.; Møller, T., Mixed dynamic and static risk-minimization with an application to survivor swaps, Eur. Actuar. J., 1, S2, 233-260, (2011)
[11] Dahl, M.; Melchior, M.; Møller, T., On systematic mortality risk and risk-minimization with survivor swaps, Scand. Actuar. J., 2008, 2-3, 114-146, (2008) · Zbl 1224.91054
[12] Dahl, M.; Møller, T., Valuation and hedging of life insurance liabilities with systematic mortality risk, Insurance Math. Econom., 39, 2, 193-217, (2006) · Zbl 1201.91089
[13] De Rosa, C.; Luciano, E.; Regis, L., Basis risk in static versus dynamic longevity-risk hedging, Scand. Actuar. J., 2017, 4, 343-365, (2017) · Zbl 1401.91129
[14] Haberman, S., Kaishev, V., Millossovich, P., Villegas, A.M., Baxter, S., Gaches, A., Gunnlaugsson, S., Sison, M., 2014. Longevity basis risk. A methodology for assessing basis risk. Institute and Faculty of Actuaries Sessional Research Paper.
[15] Li, J. S.-H.; Hardy, M. R., Measuring basis risk in longevity hedges, N. Am. Actuar. J., 15, 2, 177-200, (2011) · Zbl 1228.91042
[16] Li, J.; Li, J. S.-H.; Tan, C. I.; Tickle, L., Assessing basis risk in index-based longevity swap transactions, Ann. Actuar. Sci., 1-32, (2018)
[17] Li, J. S.-H.; Luo, A., Key Q-duration: A framework for hedging longveity risk, Astin Bull., 42, 2, 413-452, (2012) · Zbl 1277.91089
[18] Lin, T.; Tsai, C. C.-L., On the mortality/longevity risk hedging with mortality immunization, Insurance Math. Econom., 53, 3, 580-596, (2013) · Zbl 1290.91093
[19] Lin, T.; Tsai, C. C.-L., Applications of mortality durations and convexities in natural hedges, N. Am. Actuar. J., 18, 3, 417-442, (2014)
[20] Liu, Y.; Li, J. S.-H., It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk, Insurance Math. Econom., 70, 301-319, (2016) · Zbl 1371.91103
[21] Liu, Y.; Li, J. S.-H., The locally linear Cairns-Blake-Dowd model: A note on delta-nuga hedging of longevity risk, Astin Bull., 47, 1, 79-151, (2016) · Zbl 1390.91198
[22] Luciano, E.; Regis, L., Efficient versus inefficient hedging strategies in the presence of financial and longevity (value at) risk, Insurance Math. Econom., 55, 1, 68-77, (2014) · Zbl 1296.91164
[23] Luciano, E.; Regis, L.; Vigna, E., Delta-gamma hedging of mortality and interest rate risk, Insurance Math. Econom., 50, 3, 402-412, (2012) · Zbl 1237.91134
[24] Luciano, E.; Regis, L.; Vigna, E., Single- and cross-generation natural hedging of longevity and financial risk, J. Risk Insurance, (2015)
[25] Ngai, A.; Sherris, M., Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives, Insurance Math. Econom., 49, 1, 100-114, (2011)
[26] Tsai, C. C.-L.; Chung, S. L., Actuarial applications of the linear hazard transform in mortality immunization, Insurance Math. Econom., 53, 1, 48-63, (2013) · Zbl 1284.91272
[27] Tsai, C. C.-L.; Jiang, L., Actuarial applications of the linear hazard transform in life contingencies, Insurance Math. Econom., 1, 49, 7-80, (2011) · Zbl 1218.91073
[28] Tsai, J. T.; Wang, J. L.; Tzeng, L. Y., On the optimal product mix in life insurance companies using conditional value at risk, Insurance Math. Econom., 46, 1, 235-241, (2010) · Zbl 1231.91244
[29] Villegas, A. M.; Haberman, S.; Kaishev, V. K.; Millossovich, P., A comparative study of two-population models for the assessment of basis risk in longevity hedges, Astin Bull., 47, 3, 631-679, (2017) · Zbl 1390.91215
[30] Villegas, A.M., Millossovich, P., Kaishev, V., 2016. StMoMo: An R package for stochastic mortality modelling.
[31] Wong, T. W.; Chiu, M. C.; Wong, H. Y., Time-consistent mean-variance hedging of longevity risk: Effect of cointegration, Insurance Math. Econom., 56, 1, 56-67, (2014) · Zbl 1304.91136
[32] Zhou, K. Q.; Li, J. S.-H., Dynamic longevity hedging in the presence of population basis risk: A feasibility analysis from technical and economic perspectives, J. Risk Insurance, 84, S1, 417-437, (2017)
[33] Zhou, K. Q.; Li, J. S.-H., Longevity Greeks: What do insurers and capital market investors need to know?, N. Am. Actuar. J., (2018), (in press)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.