×

Pressure and flux-approximation to the isentropic relativistic Euler equations for modified Chaplygin gas. (English) Zbl 1419.76727

Summary: The formation of delta shock waves and vacuum states in solutions to the isentropic relativistic Euler equations for modified Chaplygin gas is analyzed as the double-parameter pressure and the triple-parameter flux approximation vanish, respectively. The Riemann problems under pressure perturbation and flux approximation are analytically solved. Then, it is shown that as the pressure and flux approximation, respectively, vanish, any two-shock Riemann solution tends to a delta-shock solution to the pressureless relativistic Euler equations, and the intermediate density between the two shocks tends to a weighted \(\delta\)-measure that forms a delta shock wave; any two-rarefaction Riemann solution tends to a two-contact-discontinuity solution to the pressureless relativistic Euler equations, and the nonvacuum intermediate state in between tends to a vacuum state. Especially in the process of three parameters decreasing, a U-shaped pseudo-vacuum state appears in solutions to the flux-approximation system.
©2019 American Institute of Physics

MSC:

76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76E20 Stability and instability of geophysical and astrophysical flows
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35Q31 Euler equations
76L05 Shock waves and blast waves in fluid mechanics
35Q15 Riemann-Hilbert problems in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anile, A. M., Relativistic Fluids and Magneto-Fluids, (1989), Cambridge Monographs on Mathematical Physics, Cambridge University Press · Zbl 0701.76003
[2] Benaoum, H. B., Accelerated universe from modified Chaplygin gas and tachyonic fluid · Zbl 1263.83077
[3] Bilic, N.; Tupper, G. B.; Viollier, R. D., Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas,”, Phys. Lett. B, 535, 17-21, (2002) · Zbl 0995.83512
[4] Chaplygin, S., On gas jets, Sci. Mem. Moscow Univ. Math. Phys., 21, 1063, 1-121, (1902)
[5] Chen, G.; Li, Y., Relativistic Euler equations for isentropic fluids: Stability of Riemann solutions with large oscillation, Z. Angew. Math. Phys., 55, 903-926, (2004) · Zbl 1068.35099
[6] Chen, G.; Liu, H., Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations, SIAM J. Math. Anal., 34, 925-938, (2003) · Zbl 1038.35035
[7] Chen, G.; Liu, H., Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D, 189, 141-165, (2004) · Zbl 1098.76603
[8] Cheng, H.; Yang, H., Riemann problem for the isentropic relativistic Chaplygin Euler equations, Z. Angew. Math. Phys., 63, 429-440, (2012) · Zbl 1252.35200
[9] Cruz, N.; Lepe, S.; Peä, F., Dissipative generalized Chaplygin gas as phantom dark energy physics, Phys. Lett. B, 646, 177-182, (2007)
[10] Fabris, J. C.; Velten, H. E. S.; Ogouyandjou, C.; Tossa, J., Ruling out the modified Chaplygin gas cosmologies, Phys. Lett. B, 694, 289-293, (2011)
[11] Li, J., Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14, 519-523, (2001) · Zbl 0986.76079
[12] Li, Y.; Shi, Q., Global existence of the entropy solutions to the isentropic relativistic Euler equations, Commun. Pure Appl. Anal., 4, 763-778, (2005) · Zbl 1097.35103
[13] Liang, E., Relativistic simple waves: Shock damping and entropy production, Astrophys. J., 211, 361-376, (1977)
[14] Lu, J.; Xu, L.; Li, J.; Chang, B.; Gui, Y.; Liu, H., Constraints on modified Chaplygin gas from recent observations and a comparison of its status with other models, Phys. Lett. B, 662, 87-91, (2008)
[15] Pant, V., Global entropy solutions for isentropic relativistic fluid dynamics, Commun. Partial Differ. Equations, 21, 1609-1641, (1996) · Zbl 0863.76099
[16] Taub, A. H., Relativistic Rankine-Hugoniot equations, Phys. Rev., 74, 328-334, (1948) · Zbl 0035.12103
[17] Tsien, H. S., Two dimensional subsonic flow of compressible fluids, J. Aeronaut. Sci., 6, 399-407, (1939) · JFM 65.1496.05
[18] Von Karman, T., Compressibility effects in aerodynamics, J. Aeronaut. Sci., 8, 337-365, (1941) · JFM 67.0853.01
[19] Wang, J.; Yang, H., Vanishing pressure and magnetic field limit of solutions to the nonisentropic magnetogasdynamics, Z. Angew. Math. Mech., 98, 1472-1492, (2018)
[20] Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (1972), Wiley: Wiley, New York
[21] Yang, H.; Liu, J., Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation, Sci. China Math., 58, 11, 2329-2346, (2015) · Zbl 1331.35234
[22] Yang, H.; Liu, J., Concentration and cavitation in the Euler equations for nonisentropic fluids with the flux approximation, Nonlinear Anal.: Theory, Methods Appl., 123-124, 158-177, (2015) · Zbl 1330.76120
[23] Yang, H.; Wang, J., Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas, J. Math. Anal. Appl., 413, 800-820, (2014) · Zbl 1308.76233
[24] Yang, H.; Wang, J., Concentration in vanishing pressure limit of solutions to the modified Chaplygin gas equations, J. Math. Phys., 57, 11, 111504, (2016) · Zbl 1355.83039
[25] Yang, H.; Zhang, Y., Flux approximation to the isentropic relativistic Euler equations, Nonlinear Anal.: Theory, Methods Appl., 133, 200-227, (2016) · Zbl 1398.35235
[26] Yin, G.; Sheng, W., Delta wave formation and vacuum state in vanishing pressure limit for system of conservation laws to relativistic fluid dynamics, Z. AngewF. Math. Mech., 95, 49-65, (2015) · Zbl 1322.76077
[27] Yin, G.; Song, K., Vanishing pressure limits of Riemann solutions to the isentropic relativistic Euler system for Chaplygin gas, J. Math. Anal. Appl., 411, 506-521, (2014) · Zbl 1331.35029
[28] Zhang, Y.; Yang, H., Flux-approximation limits of solutions to the relativistic Euler equations for polytropic gas, J. Math. Anal. Appl., 435, 1160-1182, (2016) · Zbl 1338.35347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.