×

Material stability and instability in non-local continuum models for dense granular materials. (English) Zbl 1419.76675

Summary: A class of common and successful continuum models for steady, dense granular flows is based on the \(\mu(I)\) model for viscoplastic grain-inertial rheology. Recent work has shown that under certain conditions, \(\mu(I)\)-based models display a linear instability in which short-wavelength perturbations grow at an unbounded rate – i.e. a Hadamard instability. This observation indicates that \(\mu(I)\) models will predict strain localization arising due to material instability in dense granular materials; however, it also raises concerns regarding the robustness of numerical solutions obtained using these models. Several approaches to regularizing this instability have been suggested in the literature. Among these, it has been shown that the inclusion of higher-order velocity gradients into the constitutive equations can suppress the Hadamard instability, while not precluding the modelling of strain localization into diffuse shear bands. In our recent work [the second author and K. Kamrin, Proc. Natl. Acad. Sci. USA 110, No. 17, 6730–6735 (2013; Zbl 1292.76070)], we have proposed a non-local model - called the non-local granular fluidity (NGF) model - which also involves higher-order flow gradients and has been shown to quantitatively describe a wide variety of steady, dense flows. In this work, we show that the NGF model also successfully regularizes the Hadamard instability of the \(\mu(I)\) model. We further apply the NGF model to the problem of strain localization in quasi-static plane-strain compression using nonlinear finite-element simulations in order to demonstrate that the model is capable of describing diffuse strain localization in a mesh-independent manner. Finally, we consider the linear stability of an alternative gradient-viscoplastic model [M. Bouzid et al., “Nonlocal rheology of granular flows across yield conditions”, Phys. Rev. Lett. 111, No. 23, Article ID 238301, 5 p. (2013; doi:10.1103/PhysRevLett.111.238301)] and show that the inclusion of higher-order gradients does not guarantee the suppression of the Hadamard instability.

MSC:

76T25 Granular flows

Citations:

Zbl 1292.76070
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abaqus2017Reference Manuals. Dassault Systèmes Simulia Corp.
[2] Al Hattamleh, O., Muhunthan, B. & Zbib, H. M.2004Gradient plasticity modelling of strain localization in granular materials. Intl J. Numer. Anal. Meth. Geomech.28, 465-481. · Zbl 1086.74006
[3] Anand, L. & Gu, C.2000Granular materials: constitutive equations and strain localization. J. Mech. Phys. Solids48, 1701-1733. · Zbl 0977.74016
[4] Anand, L., Kim, K. H. & Shawki, T. G.1987Onset of shear localization in viscoplastic solids. J. Mech. Phys. Solids35, 407-429. · Zbl 0612.73046
[5] Aranson, I. S. & Tsimring, L. S.2002Continuum theory of partially fluidized granular flows. Phys. Rev. E65, 061303.
[6] Barker, T. & Gray, J. M. N. T.2017Partial regularisation of the incompressible 𝜇(I)-rheology for granular flow. J. Fluid Mech.828, 5-32. · Zbl 1460.76869
[7] Barker, T., Schaeffer, D. G., Bohorquez, P. & Gray, J. M. N. T.2015Well-posed and ill-posed behaviour of the 𝜇(I)-rheology for granular flow. J. Fluid Mech.779, 794-818. · Zbl 1360.76338
[8] Barker, T., Schaeffer, D. G., Shearer, M. & Gray, J. M. N. T.2017Well-posed continuum equations for granular flow with compressibility and 𝜇(I)-rheology. Proc. R. Soc. Lond. A473, 20160846. · Zbl 1404.76278
[9] Bhateja, A. & Khakhar, D. V.2018Rheology of dense granular flows in two dimensions: comparison of fully two-dimensional flows to unidirectional shear flow. Phys. Rev. Fluids3, 062301(R).
[10] Bigoni, D.2012Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press. · Zbl 1269.74003
[11] Bocquet, L., Colin, A. & Ajdari, A.2009Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett.103, 036001.
[12] de Borst, R. & Mühlhaus, H.-B.1992Gradient-dependent plasticity: formulation and algorithmic aspects. Intl J. Numer. Meth. Engng35, 521-539. · Zbl 0768.73019
[13] Bouzid, M., Izzet, A., Trulsson, M., Clément, E., Claudin, P. & Andreotti, B.2015aNon-local rheology in dense granular flows. Eur. Phys. J. E38, 125.
[14] Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B.2013Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett.111, 238301.
[15] Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B.2015bMicrorheology to probe non-local effects in dense granular flows. Europhys. Lett.109, 24002.
[16] Browder, F. E.1961On the spectral theory of elliptic differential operators. I. Math. Ann.142, 22-130. · Zbl 0104.07502
[17] da Cruz, F., Emam, S., Prochnow, M., Roux, J. & Chevoir, F.2005Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E72, 021309.
[18] Desrues, J. & Viggiani, G.2004Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Intl J. Numer. Anal. Meth. Geomech.28, 279-321.
[19] Dunatunga, S. & Kamrin, K.2015Continuum modelling and simulation of granular flows through their many phases. J. Fluid Mech.779, 483-513. · Zbl 1360.76339
[20] Dunatunga, S. & Kamrin, K.2017Continuum modeling of projectile impact and penetration in dry granular media. J. Mech. Phys. Solids100, 45-60.
[21] Engelen, R. A. B., Geers, M. G. D. & Baaijens, F. P. T.2003Nonlocal implicit gradient enhanced elasto-plasticity for the modeling of softening behavior. Intl J. Plasticity19, 403-433. · Zbl 1090.74519
[22] Fenistein, D. & van Hecke, M.2003Wide shear zones in granular bulk flow. Nature425, 256.
[23] Gao, Z. & Zhao, J.2013Strain localization and fabric evolution in sand. Intl J. Solids Struct.50, 3634-3648.
[24] Goddard, J. D.2003Material instability in complex fluids. Annu. Rev. Fluid Mech.35, 113-133. · Zbl 1125.76344
[25] Goddard, J. D. & Alam, M.1999Shear-flow and material instabilities in particulate suspensions and granular media. Particul. Sci. Technol.17, 69-96.
[26] Goddard, J. D. & Lee, J.2017On the stability of the 𝜇(I) rheology for granular flow. J. Fluid Mech.833, 302-331. · Zbl 1419.76672
[27] Goddard, J. D. & Lee, J.2018Regularization by compressibility of the 𝜇(I) model of dense granular flow. Phys. Fluids30, 073302.
[28] Goyon, J., Colin, A., Ovarlez, G., Ajdari, A. & Bocquet, L.2008Spatial cooperativity in soft glassy flows. Nature454 (7200), 84-87.
[29] Han, C. & Drescher, A.1993Shear bands in biaxial tests on dry coarse sand. Soils Found.33, 118-132.
[30] Henann, D. L. & Kamrin, K.2013A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA110, 6730-6735. · Zbl 1292.76070
[31] Henann, D. L. & Kamrin, K.2014aContinuum modeling of secondary rheology in dense granular materials. Phys. Rev. Lett.113, 178001.
[32] Henann, D. L. & Kamrin, K.2014bContinuum thermomechanics of the nonlocal granular rheology. Intl J. Plasticity60, 145-162.
[33] Henann, D. L. & Kamrin, K.2016A finite element implementation of the nonlocal granular rheology. Intl J. Numer. Meth. Engng108, 273-302.
[34] Heyman, J., Delannay, R., Tabuteau, H. & Valance, A.2017Compressibility regularizes the 𝜇(I)-rheology for dense granular flows. J. Fluid Mech.830, 553-568. · Zbl 1421.76249
[35] Hill, R.1962Acceleration waves in solids. J. Mech. Phys. Solids10, 1-16. · Zbl 0111.37701
[36] Houdoux, D., Nguyen, T. B., Amon, A. & Crassous, J.2018Plastic flow and localization in an amorphous material: experimental interpretation of the fluidity. Phys. Rev. E98, 022905.
[37] Jenkins, J. T.2006Dense shearing flows of inelastic disks. Phys. Fluids18, 103307.
[38] Jop, P., Forterre, Y. & Pouliquen, O.2005Crucial role of side walls for granular surface flows: consequences for the rheology. J. Fluid Mech.541, 21-50. · Zbl 1082.76106
[39] Jop, P., Forterre, Y. & Pouliquen, O.2006A constitutive law for dense granular flows. Nature441, 727-730.
[40] Jop, P., Forterre, Y. & Pouliquen, O.2007Initiation of granular surface flows in a narrow channel. Phys. Fluids19, 088102. · Zbl 1182.76357
[41] Kamrin, K.2010Nonlinear elasto-plastic model for dense granular flow. Intl J. Plasticity26, 167-188. · Zbl 1415.74013
[42] Kamrin, K. & Henann, D. L.2015Nonlocal modeling of granular flows down inclines. Soft Matt.11, 179-185.
[43] Kamrin, K. & Koval, G.2012Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett.108, 178301.
[44] Kharel, P. & Rognon, P.2017Partial jamming and non-locality in dense granular flows. Eur. Phys. J. Web Conf.140, 03060.
[45] Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S.2001Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett.86, 1757-1760.
[46] Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F.2009Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E79, 021306.
[47] Krishnaraj, K. P. & Nott, P. R.2016A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly. Nat. Commun.7, 10630.
[48] Lagrée, P.-Y., Staron, L. & Popinet, S.2011The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a 𝜇(I)-rheology. J. Fluid Mech.686, 378-408. · Zbl 1241.76413
[49] Le Bouil, A., Amon, A., McNamara, S. & Crassous, J.2014Emergence of cooperativity in plasticity of soft glassy materials. Phys. Rev. Lett.112, 246001.
[50] Liu, D. & Henann, D. L.2017Non-local continuum modelling of steady, dense granular heap flows. J. Fluid Mech.831, 212-227. · Zbl 1421.76250
[51] Liu, D. & Henann, D. L.2018Size-dependence of the flow threshold in dense granular materials. Soft Matt.14, 5294-5305.
[52] Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N.1984Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech.140, 223-256. · Zbl 0553.73098
[53] MiDi, G. D. R.2004On dense granular flows. Eur. Phys. J. E14, 341-365.
[54] Mohan, L. S., Rao, K. K. & Nott, P. R.2002A frictional Cosserat model for the slow shearing of granular materials. J. Fluid Mech.457, 377-409. · Zbl 1112.76487
[55] Needleman, A.1988Material rate dependence and mesh sensitivity in localization problems. Comput. Meth. Appl. Mech. Engng45, 69-85. · Zbl 0618.73054
[56] Needleman, A. & Tvergaard, V.1992Analyses of plastic flow localization in metals. Appl. Mech. Rev.45, S3-S18.
[57] Nemat-Nasser, S.2004Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press. · Zbl 1073.74001
[58] Pouliquen, O. & Forterre, Y.2009A non-local rheology for dense granular flows. Phil. Trans. R. Soc. A367, 5091-5107. · Zbl 1192.76062
[59] Rechenmacher, A. L.2006Grain-scale processes governing shear band initiation and evolution in sands. J. Mech. Phys. Solids54, 22-45. · Zbl 1120.74631
[60] Rudnicki, J. W. & Rice, J. R.1975Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids23, 371-394.
[61] Rycroft, C. H., Kamrin, K. & Bazant, M. Z.2009Assessing continuum hypotheses in simulation of granular flow. J. Mech. Phys. Solids57, 828-839.
[62] Savage, S. B.1998Analyses of slow high-concentration flows of granular materials. J. Fluid Mech.377, 1-26. · Zbl 0947.76089
[63] Schofield, A. & Wroth, C.1968Critical State Soil Mechanics. McGraw-Hill.
[64] Staron, L., Lagrée, P.-Y. & Popinet, P.2012The granular silo as a continuum plastic flow: the hour-glass vs the clepsydra. Phys. Fluids24, 103301.
[65] Staron, L., Lagrée, P.-Y. & Popinet, S.2014Continuum simulation of the discharge of the granular silo: a validation test for the 𝜇(I) visco-plastic flow law. Eur. Phys. J. E Soft Matt.37, 5. · Zbl 1241.76413
[66] Sun, J. & Sundaresan, S.2011A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech.682, 590-616. · Zbl 1241.76416
[67] Tang, Z., Brzinski, T. A., Shearer, M. & Daniels, K. E.2018Nonlocal rheology of dense granular flow in annular shear experiments. Soft Matt.14, 3040-3048.
[68] Thomas, T. Y.1961Plastic Flow and Fracture in Solids. Academic Press. · Zbl 0095.38902
[69] Vardoulakis, I. & Aifantis, E. C.1991A gradient flow theory of plasticity for granular media. Acta Mechanica87, 197-217. · Zbl 0735.73026
[70] Weinhart, T., Hartkamp, R., Thornton, A. R. & Luding, S.2013Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids25, 070605.
[71] Zhang, Q. & Kamrin, K.2017Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett.118, 058001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.