×

zbMATH — the first resource for mathematics

A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. (English) Zbl 1419.76506
Summary: The Vlasov-Poisson equations describe the evolution of a collisionless plasma, represented through a probability density function (PDF) that self-interacts via an electrostatic force. One of the main difficulties in numerically solving this system is the severe time-step restriction that arises from parts of the PDF associated with moderate-to-large velocities. The dominant approach in the plasma physics community for removing these time-step restrictions is the so-called particle-in-cell (PIC) method, which discretizes the distribution function into a set of macro-particles, while the electric field is represented on a mesh. Several alternatives to this approach exist, including fully Lagrangian, fully Eulerian, and so-called semi-Lagrangian methods. The focus of this work is the semi-Lagrangian approach, which begins with a grid-based Eulerian representation of both the PDF and the electric field, then evolves the PDF via Lagrangian dynamics, and finally projects this evolved field back onto the original Eulerian mesh. In particular, we develop in this work a method that discretizes the 1 + 1 Vlasov-Poisson system via a high-order discontinuous Galerkin (DG) method in phase space, and an operator split, semi-Lagrangian method in time. Second-order accuracy in time is relatively easy to achieve via Strang operator splitting. With additional work, using higher-order splitting and a higher-order method of characteristics, we also demonstrate how to push this scheme to fourth-order accuracy in time. We show how to resolve all of the Lagrangian dynamics in such a way that mass is exactly conserved, positivity is maintained, and high-order accuracy is achieved. The Poisson equation is solved to high-order via the smallest stencil local discontinuous Galerkin (LDG) approach. We test the proposed scheme on several standard test cases.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76M20 Finite difference methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
Software:
Vador
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arnold, D.N.; Brezzi, F.; Cockburn, B.; Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. numer. anal., 39, 1749-1779, (2002) · Zbl 1008.65080
[2] Banks, J.W.; Hittinger, J.A.F., A new class of nonlinear finite-volume methods for Vlasov simulation, IEEE trans. plasma sci., 38, 2198-2207, (2010)
[3] Barnes, J.; Hut, P., A hierarchical O(nlogn) force-calculation algorithm, Nature, 324, 446-449, (1986)
[4] Belaouar, R.; Crouseilles, N.; Degond, P.; Sonnendrücker, E., An asymptotically stable semi-Lagrangian scheme in the quasi-neutral limit, J. sci. comput., 41, 341-365, (2009) · Zbl 1203.65217
[5] Besse, N.; Segre, J.; Sonnendrücker, E., Semi-Lagrangian schemes for the two-dimensional vlasov – poisson system on unstructured meshes, Transp. theory stat. phys., 34, 311-332, (2005) · Zbl 1109.82002
[6] Bessho, N.; Bhattacharjee, A., Fast collisionless reconnection in electron-positron plasmas, Phys. plasmas, 14, 056503, (2007)
[7] Birdsall, C.K.; Langdon, A.B., Plasma physics via computer simulation, (1985), Taylor & Francis Group
[8] Birn, J.; Drake, J.F.; Shay, M.A.; Rogers, B.N.; Denton, R.E.; Hesse, M.; Kuznetsova, M.; Ma, Z.W.; Bhattacharjee, A.; Otto, A.; Pritchett, P.L., Geospace environmental modeling (GEM) magnetic reconnection challenge, J, geophys. res. space phys., 106, A3, 3715-3719, (2001)
[9] Cheng, C.; Knorr, G., The integration of the Vlasov equation in configuration space, J. comput. phys., 22, 330-351, (1976)
[10] Christlieb, A.J.; Hitchon, W.N.G.; Keiter, E.R., A computational investigation of the effects of varying discharge geometry for an inductively coupled plasma, IEEE trans. plasma sci., 28, 2214-2231, (2000)
[11] Christlieb, A.J.; Krasny, R.; Verboncoeur, J.P., Efficient particle simulation of a virtual cathode using a grid-free treecode Poisson solver, IEEE trans. plasma sci., 32, 384-389, (2004)
[12] Christlieb, A.J.; Krasny, R.; Verboncoeur, J.P.; Emhoff, J.W.; Boyd, I.D., Grid-free plasma simulation techniques, IEEE trans. plasma sci., 34, 149-165, (2006)
[13] Cockburn, B.; Hou, S.; Shu, C.-W., TVB runge – kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. comput., 54, 545, (1990) · Zbl 0695.65066
[14] Cockburn, B.; Lin, S.Y.; Shu, C.-W., TVB runge – kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. comput. phys., 84, 90, (1989) · Zbl 0677.65093
[15] Cockburn, B.; Shu, C.-W., TVB runge – kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework, Math. comput., 52, 411-435, (1989) · Zbl 0662.65083
[16] Cockburn, B.; Shu, C.-W., The runge – kutta local projection P1-discontinuous Galerkin method for scalar conservation laws, M^{2}an, 25, 337, (1991) · Zbl 0732.65094
[17] Cockburn, B.; Shu, C.-W., The runge – kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. comput. phys., 141, 199-224, (1998) · Zbl 0920.65059
[18] Coulaud, O.; Sonnendrücker, E.; Dillon, E.; Bertrand, P.; Ghizzo, A., Parallelization of semi-Lagrangian Vlasov codes, J. plasma phys., 61, 435-448, (1999)
[19] Crouseilles, N.; Latu, G.; Sonnendrücker, E., Hermite spline interpolation on patches for parallelly solving the vlasov – poisson equation, Int. J. appl. math. comput. sci., 17, 335-349, (2007) · Zbl 1159.65016
[20] Crouseilles, N.; Mehrenberger, M.; Sonnendrücker, E., Conservative semi-Lagrangian schemes for Vlasov equations, J. comput. phys., 229, 1927-1953, (2010) · Zbl 1303.76103
[21] Crouseilles, N.; Respaud, T.; Sonnendrücker, E., A forward semi-Lagrangian method for the numerical solution of the Vlasov equation, Comput. phys. commun., 180, 1730-1745, (2009) · Zbl 1197.82012
[22] Filbet, F.; Sonnendrücker, E., Comparison of Eulerian Vlasov solvers, Comput. phys. commun., 150, 247-266, (2003) · Zbl 1196.82108
[23] Forest, E.; Ruth, R.D., Fourth-order symplectic integration, Phys. D nonlinear phenom., 43, 105-117, (1990) · Zbl 0713.65044
[24] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. comput. phys., 73, 325-348, (1987) · Zbl 0629.65005
[25] R.E. Heath, I.M. Gamba, P.J. Morrison, C. Michler, A discontinuous Galerkin method for the Vlasov-Poisson system, 2010. <http://arxiv.org/abs/1009.3046v1>. · Zbl 1244.82081
[26] Hesthaven, J.S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, (2007), Springer · Zbl 1078.78014
[27] Hockney, R.W.; Eastwood, J.W., Computer simulation using particles, (1988), Institute of Physics Publishing. · Zbl 0662.76002
[28] Idomura, Y.; Ida, M.; Tokuda, S., Conservative gyrokinetic Vlasov simulation, Commun. nonlinear sci. numer. simul., 13, 227-233, (2008) · Zbl 1130.35368
[29] Jacobs, G.B.; Hesthaven, J.S., High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, J. comput. phys., 96-121, 214, (2006) · Zbl 1137.76461
[30] Jacobs, G.B.; Hesthaven, J.S., Implicit-explicit time integration of a high-order particle-in-cell method with hyperbolic divergence cleaning, Comput. phys. commun., 180, 1760-1767, (2009) · Zbl 1197.76081
[31] Lindsay, K.; Krasny, R., A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow, J. comput. phys., 172, 879-907, (2001) · Zbl 1002.76093
[32] Mouhot, C.; Villani, C., Landau damping, J. math. phys., 51, 015204, (2010) · Zbl 1247.82081
[33] Parker, G.J.; Hitchon, W.N.G., Convected scheme simulations of the electron distribution function in a positive column plasma, Jpn. J. appl. phys., 36, 4799-4807, (1997)
[34] Qiu, J.; Christlieb, A.J., A conservative high order semi-Lagrangian method for the Vlasov equation, J. comp. phys., 229, 1130-1149, (2010) · Zbl 1188.82069
[35] Qiu, J.; Dumbser, M.; Shu, C.-W., The discontinuous Galerkin method with lax – wendroff type time discretizations, Comput. methods appl. mech. eng., 194, 4528-4543, (2005) · Zbl 1093.76038
[36] Restelli, M.; Bonaventura, L.; Sacco, R., A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows, J. comput. phys., 216, 195-215, (2006) · Zbl 1090.76045
[37] Schmitz, H.; Grauer, R., Darwin – vlasov simulations of magnetised plasmas, J. comput. phys., 214, 738-756, (2006) · Zbl 1136.82374
[38] Sonnendrücker, E.; Roche, J.; Bertrand, P.; Ghizzo, A., The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. comput. phys., 149, 201-220, (1999) · Zbl 0934.76073
[39] Strang, G., On the construction and comparison of difference schemes, SIAM J. numer. anal., 506-517, (1968) · Zbl 0184.38503
[40] Vay, J.-L.; Colella, P.; Kwan, J.W.; McCorquodale, P.; Serafini, D.B.; Friedman, A.; Grote, D.P.; Westenskow, G.; Adam, J.-C.; Héron, A.; Haber, I., Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams, Phys. plasmas, 11, 2928, (2004)
[41] Yoshida, H., Construction of higher order symplectic integrators, Phys. lett. A, 150, 262-268, (1990)
[42] Yoshida, H., Recent progress in the theory and application of symplectic integrators, Celest. mech. dyn. astro., 56, 27-43, (1993) · Zbl 0777.70002
[43] Zaki, S.I.; Gardner, L.R.T.; Boyd, T.J.M., A finite element code for the simulation of one-dimensional Vlasov plasmas. 2. applications, J. comput. phys., 79, 200-208, (1988) · Zbl 0658.76112
[44] Zhang, X.; Shu, C.-W., On maximum-principle-satisfying high order schemes for scalar conservation laws, J. comput. phys., 229, 3091-3120, (2010) · Zbl 1187.65096
[45] Zhou, T.; Guo, Y.; Shu, C.W., Numerical study on Landau damping, Phys. D nonlinear phenom., 157, 322-333, (2001) · Zbl 0972.82083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.