×

zbMATH — the first resource for mathematics

Time evolution of uniform momentum zones in a turbulent boundary layer. (English) Zbl 1419.76318
Summary: Time-resolved planar particle image velocimetry was used to analyse the structuring of a turbulent boundary layer into uniform momentum zones (UMZs). The instantaneous peak-detection method employed by R. J. Adrian et al. [ibid. 422, 1–54 (2000; Zbl 0959.76503)] and C. M. De Silva et al. [ibid. 786, 309–331 (2016; Zbl 1381.76106)] is extended to account for temporal coherence of UMZs. The resulting number of zones detected appears to follow a normal distribution at any given instant. However, the extreme cases in which the number of zones is either very high or very low, are shown to be linked with two distinct flow states. A higher than average number of zones is associated with a large-scale \(Q2\) event in the log region which creates increased small-scale activity within that region. Conversely, a low number of zones corresponds to a large-scale \(Q4\) event in the log region and decreased turbulent activity away from the wall. The residence times, within the measurement plane, of zones belonging to the latter scenario are shown to be on average four times larger than those of zones present during higher than average zone structuring states. For both cases, greater residence times are observed for zones of higher momentum that are generally closer to the free stream.

MSC:
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adrian, R. J., Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 4, (2007) · Zbl 1146.76307
[2] Adrian, R. J.; Meinhart, C. D.; Tomkins, C. D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, (2000) · Zbl 0959.76503
[3] Ahn, Junsun; Lee, J. H.; Lee, J.; Kang, J.-H.; Sung, H. J., Direct numerical simulation of a 30r long turbulent pipe flow at Re = 3008, Phys. Fluids, 27, 6, (2015)
[4] Baltzer, J. R.; Adrian, R. J.; Wu, X., Structural organization of large and very large scales in turbulent pipe flow simulation, J. Fluid Mech., 720, 236-279, (2013) · Zbl 1284.76218
[5] Bisset, D. K.; Hunt, J. C. R.; Rogers, M. M., The turbulent/non-turbulent interface bounding a far wake, J. Fluid Mech., 451, 383-410, (2002) · Zbl 1156.76397
[6] Brown, G. L.; Thomas, A. S. W., Large structure in a turbulent boundary layer, Phys. Fluids, 20, 10, S243-S252, (1977)
[7] Chauhan, K.; Philip, J.; Marusic, I., Scaling of the turbulent/non-turbulent interface in boundary layers, J. Fluid Mech., 751, 298-328, (2014)
[8] Chauhan, K.; Philip, J.; De Silva, C. M.; Hutchins, N.; Marusic, I., The turbulent/non-turbulent interface and entrainment in a boundary layer, J. Fluid Mech., 742, 119-151, (2014)
[9] Christensen, K. T.; Adrian, R. J., Statistical evidence of hairpin vortex packets in wall turbulence, J. Fluid Mech., 431, 433-443, (2001) · Zbl 1008.76029
[10] Clauser, F. H., Turbulent boundary layers in adverse pressure gradients, J. Aero. Sci., 21, 2, 91-108, (1954)
[11] Corino, E. R.; Brodkey, R. S., A visual investigation of the wall region in turbulent flow, J. Fluid Mech., 37, 1-30, (1969)
[12] Corrsin, S. & Kistler, A. L.1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep.
[13] Davoust, S.; Jacquin, L., Taylor’s hypothesis convection velocities from mass conservation equation, Phys. Fluids, 23, 5, (2011)
[14] Dennis, D. J. C.; Nickels, T. B., Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures, J. Fluid Mech., 673, 218-244, (2011) · Zbl 1225.76034
[15] Eisma, J.; Westerweel, J.; Ooms, G.; Elsinga, G. E., Interfaces and internal layers in a turbulent boundary layer, Phys. Fluids, 27, 5, (2015)
[16] Fisher, M. J.; Davies, P. O. A. L., Correlation measurements in a non-frozen pattern of turbulence, J. Fluid Mech., 18, 97-116, (1964) · Zbl 0117.20708
[17] Ganapathisubramani, B.; Hutchins, N.; Monty, J. P.; Chung, D.; Marusic, I., Amplitude and frequency modulation in wall turbulence, J. Fluid Mech., 712, 61-91, (2012) · Zbl 1275.76138
[18] Ganapathisubramani, B.; Longmire, E.; Marusic, I., Characteristics of vortex packets in turbulent boundary layers, J. Fluid Mech., 478, 35-46, (2003) · Zbl 1032.76500
[19] Geng, C.; He, G.; Wang, Y.; Xu, C.; Lozano-Durán, Á.; Wallace, J. M., Taylor’s hypothesis in turbulent channel flow considered using a transport equation analysis, Phys. Fluids, 27, 2, (2015)
[20] Guala, M.; Hommema, S. E.; Adrian, R. J., Large-scale and very-large-scale motions in turbulent pipe flow, J. Fluid Mech., 554, 521-542, (2006) · Zbl 1156.76316
[21] Head, M. R.; Bandyopadhyay, P., New aspects of turbulent boundary-layer structure, J. Fluid Mech., 107, 297-338, (1981)
[22] Hellström, L. H. O.; Ganapathisubramani, B.; Smits, A. J., The evolution of large-scale motions in turbulent pipe flow, J. Fluid Mech., 779, 701-715, (2015) · Zbl 1360.76102
[23] Hunt, J. C.; Eames, I.; Westerweel, J., Mechanics of inhomogeneous turbulence and interfacial layers, J. Fluid Mech., 554, 499-519, (2006) · Zbl 1090.76032
[24] Hutchins, N.; Marusic, I., Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 1-28, (2007) · Zbl 1113.76004
[25] Hutchins, N.; Marusic, I., Large-scale influences in near-wall turbulence, Phil. Trans. R. Soc. Lond. A, 365, 1852, 647-664, (2007) · Zbl 1152.76421
[26] Hutchins, N.; Nickels, T. B.; Marusic, I.; Chong, M. S., Hot-wire spatial resolution issues in wall-bounded turbulence, J. Fluid Mech., 635, 103-136, (2009) · Zbl 1183.76025
[27] Ishihara, T., Ogasawara, H. & Hunt, J. C. R.2015Analysis of conditional statistics obtained near the turbulent/non-turbulent interface of turbulent boundary layers. J. Fluids Struct.53, 50-57; Special Issue on Unsteady Separation in Fluid-Structure Interaction II. doi:10.1016/j.jfluidstructs.2014.10.008
[28] 2008 Evaluation of measurement data - Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections). Tech. Rep. Joint Committee for Guides in Metrology.
[29] Jiménez, J., Near-wall turbulence, Phys. Fluids, 25, 10, (2013)
[30] Jones, M. B.; Marusic, I.; Perry, A. E., Evolution and structure of sink-flow turbulent boundary layers, J. Fluid Mech., 428, 1-27, (2001) · Zbl 0963.76544
[31] Khashehchi, M.; Ooi, A.; Soria, J.; Marusic, I., Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet, Exp. Fluids, 54, 1, 1-12, (2013)
[32] Kim, H. T.; Kline, S. J.; Reynolds, W. C., The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech., 50, 133-160, (1971)
[33] Kim, J.; Hussain, F., Propagation velocity of perturbations in turbulent channel flow, Phys. Fluids A, 5, 3, 695-706, (1993)
[34] Kim, K. C.; Adrian, R. J., Very large-scale motion in the outer layer, Phys. Fluids, 11, 2, 417-422, (1999) · Zbl 1147.76430
[35] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layers, J. Fluid Mech., 30, 741-773, (1967)
[36] Kovasznay, L. S. G.; Kibens, V.; Blackwelder, R. F., Large-scale motion in the intermittent region of a turbulent boundary layer, J. Fluid Mech., 41, 283-325, (1970)
[37] Kwon, Y. S.; Philip, J.; De Silva, C. M.; Hutchins, N.; Monty, J. P., The quiescent core of turbulent channel flow, J. Fluid Mech., 751, 228-254, (2014) · Zbl 1416.76063
[38] Lee, J. H.; Sung, H. J., Very-large-scale motions in a turbulent boundary layer, J. Fluid Mech., 673, 80-120, (2011) · Zbl 1225.76162
[39] Lozano-Duran, A.; Flores, O.; Jimenez, J., The three-dimensional structure of momentum transfer in turbulent channels, J. Fluid Mech., 694, 100-130, (2012) · Zbl 1250.76108
[40] Mathis, R.; Hutchins, N.; Marusic, I., Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers, J. Fluid Mech., 628, 311-337, (2009) · Zbl 1181.76008
[41] Meinhart, C. D.; Adrian, R. J., On the existence of uniform momentum zones in a turbulent boundary layer, Phys. Fluids, 7, 4, 694-696, (1995)
[42] Offen, G. R.; Kline, S. J., A proposed model of the bursting process in turbulent boundary layers, J. Fluid Mech., 70, 209-228, (1975)
[43] Perry, A. E.; Chong, M. S., On the mechanism of wall turbulence, J. Fluid Mech., 119, 173-217, (1982) · Zbl 0517.76057
[44] Phillips, O. M., The irrotational motion outside a free turbulent boundary, Math. Proc. Camb. Phil. Soc., 51, 220-229, (1955) · Zbl 0064.20501
[45] Sciacchitano, A.; Wieneke, B., PIV uncertainty propagation, Meas. Sci. Technol., 27, 8, (2016)
[46] De Silva, C., Marusic, I. & Hutchins, N.2014Regions of uniform streamwise momentum in turbulent boundary layers. In Proceedings of the 19th Australasian Fluid Mechanics Conference, RMIT University, Melbourne, Australia. · Zbl 1381.76106
[47] Da Silva, C. B.; Dos Reis, R. J. N.; Pereira, J. C. F., The intense vorticity structures near the turbulent/non-turbulent interface in a jet, J. Fluid Mech., 685, 165-190, (2011) · Zbl 1241.76253
[48] De Silva, C. M.; Hutchins, N.; Marusic, I., Uniform momentum zones in turbulent boundary layers, J. Fluid Mech., 786, 309-331, (2016) · Zbl 1381.76106
[49] Smits, A. J.; Mckeon, B. J.; Marusic, I., High Reynolds number wall turbulence, Annu. Rev. Fluid Mech., 43, 1, 353-375, (2011) · Zbl 1299.76002
[50] Spalding, D. B., A single formula for the law of the wall, Trans. ASME J. Appl. Mech., 28, 3, 455-458, (1961) · Zbl 0098.17603
[51] Theodorsen, T.1952Mechanism of turbulence. In Proceedings of the 2nd Midwestern Conference of Fluid Mechanics, Ohio State University, Colombus, OH. · Zbl 0142.44201
[52] Tomkins, C. D.; Adrian, R. J., Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer, J. Fluid Mech., 545, 141-162, (2005) · Zbl 1085.76519
[53] Townsend, A. A., Momentum and energy diffusion in the turbulent wake of a cylinder, Proc. R. Soc. Lond. A, 197, 1048, 124-140, (1949)
[54] Turner, J. S., Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows, J. Fluid Mech., 173, 431-471, (1986)
[55] Vallikivi, M.; Ganapathisubramani, B.; Smits, A. J., Spectral scaling in boundary layers and pipes at very high Reynolds numbers, J. Fluid Mech., 771, 303-326, (2015)
[56] Wallace, J. M.; Eckelmann, H.; Brodkey, R. S., The wall region in turbulent shear flow, J. Fluid Mech., 54, 39-48, (1972)
[57] Westerweel, J.; Fukushima, C.; Pedersen, J. M.; Hunt, J. C. R., Mechanics of the turbulent-nonturbulent interface of a jet, Phys. Rev. Lett., 95, (2005)
[58] Westerweel, J.; Fukushima, C.; Pedersen, J. M.; Hunt, J. C. R., Momentum and scalar transport at the turbulent/non-turbulent interface of a jet, J. Fluid Mech., 631, 199-230, (2009) · Zbl 1181.76015
[59] Wu, Y.; Christensen, K. T., Population trends of spanwise vortices in wall turbulence, J. Fluid Mech., 568, 55-76, (2006) · Zbl 1104.76025
[60] Zaman, K. B. M. Q.; Hussain, A. K. M. F., Taylor hypothesis and large-scale coherent structures, J. Fluid Mech., 112, 379-396, (1981)
[61] Zheng, S.; Longmire, E., Perturbing vortex packets in a turbulent boundary layer, J. Fluid Mech., 748, 368-398, (2014)
[62] Zhou, J.; Adrian, R. J.; Balachandar, R. S.; Kendall, T. M., Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., 387, 353-396, (1999) · Zbl 0946.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.