zbMATH — the first resource for mathematics

Coherent structures in wall-bounded turbulence. (English) Zbl 1419.76316
Summary: This article discusses the description of wall-bounded turbulence as a deterministic high-dimensional dynamical system of interacting coherent structures, defined as eddies with enough internal dynamics to behave relatively autonomously from any remaining incoherent part of the flow. The guiding principle is that randomness is not a property, but a methodological choice of what to ignore in the flow, and that a complete understanding of turbulence, including the possibility of control, requires that it be kept to a minimum. After briefly reviewing the underlying low-order statistics of flows at moderate Reynolds numbers, the article examines what two-point statistics imply for the decomposition of the flow into individual eddies. Intense eddies are examined next, including their temporal evolution, and shown to satisfy many of the properties required for coherence. In particular, it is shown that coherent structures larger than the Corrsin scale are a natural consequence of the shear. In wall-bounded turbulence, they can be classified into coherent dispersive waves and transient bursts. The former are found in the viscous layer near the wall, and as very large structures spanning the entire boundary layer. Although they are shear-driven, these waves have enough internal structure to maintain a uniform advection velocity. Conversely, bursts exist at all scales, are characteristic of the logarithmic layer, and interact almost linearly with the shear. While the waves require a wall to determine their length scale, the bursts are essentially independent from it. The article concludes with a brief review of our present theoretical understanding of turbulent structures, and with a list of open problems and future perspectives.
Chance is the name we give to what we choose to ignore (Voltaire)

76F40 Turbulent boundary layers
76F20 Dynamical systems approach to turbulence
76F70 Control of turbulent flows
Full Text: DOI
[1] Adrian, R. J., Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, (2007) · Zbl 1146.76307
[2] Adrian, R. J.; Meinhart, C. D.; Tomkins, C., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, (2000) · Zbl 0959.76503
[3] Adrian, R. J.; Moin, P., Stochastic estimation of organized turbulent structure: homogeneous shear flow, J. Fluid Mech., 190, 531-559, (1988) · Zbl 0642.76070
[4] Del Álamo, J. C.; Jiménez, J., Linear energy amplification in turbulent channels, J. Fluid Mech., 559, 205-213, (2006) · Zbl 1095.76021
[5] Del Álamo, J. C.; Jiménez, J., Estimation of turbulent convection velocities and corrections to Taylor’s approximation, J. Fluid Mech., 640, 5-26, (2009) · Zbl 1183.76761
[6] Del Álamo, J. C.; Jiménez, J.; Zandonade, P.; Moser, R. D., Scaling of the energy spectra of turbulent channels, J. Fluid Mech., 500, 135-144, (2004) · Zbl 1059.76031
[7] Del Álamo, J. C.; Jiménez, J.; Zandonade, P.; Moser, R. D., Self-similar vortex clusters in the turbulent logarithmic region, J. Fluid Mech., 561, 329-358, (2006) · Zbl 1157.76346
[8] Antonia, R. A.; Atkinson, J. D., High-order moments of Reynolds shear stress fluctuations in a turbulent boundary layer, J. Fluid Mech., 58, 581-593, (1973)
[9] Arnold, V. I., Geometric Methods in the Theory of Ordinary Differential Equations, (1983), Springer
[10] Bak, P.; Tang, C.; Wiesenfeld, K., Self-organized criticality, Phys. Rev. A, 38, 364-374, (1987) · Zbl 1230.37103
[11] Bergé, P.; Pomeau, Y.; Vidal, C., Order within Chaos: Towards a Deterministic Approach to Turbulence, (1984), Wiley-Interscience · Zbl 0669.58022
[12] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539-575, (1993)
[13] Betchov, R., An inequality concerning the production of vorticity in isotropic turbulence, J. Fluid Mech., 1, 497-504, (1956) · Zbl 0071.40603
[14] Brown, G. L.; Roshko, A., On the density effects and large structure in turbulent mixing layers, J. Fluid Mech., 64, 775-816, (1974) · Zbl 1416.76061
[15] Butler, K. M.; Farrell, B. F., Optimal perturbations and streak spacing in wall-bounded shear flow, Phys. Fluids A, 5, 774-777, (1993)
[16] Choi, H.; Jeon, W.-P.; Kim, J., Control of flow over a bluff body, Annu. Rev. Fluid Mech., 40, 113-139, (2008) · Zbl 1136.76022
[17] Cole, J. D., Perturbation Methods in Applied Mathematics, (1968), Blaisdell · Zbl 0162.12602
[18] Corrsin, S.1958 Local isotropy in turbulent shear flow. NACA Research Memo. 58B11.
[19] Cvitanović, P., Invariant measurement of strange sets in terms of cycles, Phys. Rev. Lett., 61, 2729-2732, (1988)
[20] Deardorff, J. W., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., 41, 453-480, (1970) · Zbl 0191.25503
[21] Dong, S.; Lozano-Durán, A.; Sekimoto, A.; Jiménez, J., Coherent structures in statistically stationary homogeneous shear turbulence, J. Fluid Mech., 816, 167-208, (2017) · Zbl 1383.76181
[22] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability, (1981), Cambridge University Press
[23] Earman, J.; Norton, J. D., The wrath of Maxwell’s demon. Part I. From Maxwell to Szilard, Stud. Hist. Phil. Mod. Phys., 29, 435-471, (1998) · Zbl 1222.00027
[24] Encinar, M. P. & Jiménez, J.2016Characterization of linear-like Orr bursts in fully turbulent channel flows. In Proc. Div. Fluid Dyn., p. L32.6. American Physical Society.
[25] Farge, M., Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech., 24, 395-457, (1992) · Zbl 0743.76042
[26] Farrell, B. F.; Ioannou, P. J., Generalized stability theory. Part II: nonautonomous operators, J. Atmos. Sci., 53, 2041-2053, (1996)
[27] Farrell, B. F.; Ioannou, P. J., Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow, J. Fluid Mech., 708, 149-196, (2012) · Zbl 1275.76125
[28] Farrell, B. F.; Ioannou, P. J.; Jiménez, J.; Constantinou, N. C.; Lozano-Durán, A.; Nikolaidis, M., A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow, J. Fluid Mech., 809, 290-315, (2016) · Zbl 1383.76225
[29] Flores, O.; Jiménez, J., Hierarchy of minimal flow units in the logarithmic layer, Phys. Fluids, 22, (2010)
[30] Gasquet, C.; Witomski, P., Fourier Analysis and Applications, (1998), Springer
[31] Gaster, M.; Kit, E.; Wygnanski, I., Large-scale structures in a forced turbulent mixing layer, J. Fluid Mech., 150, 23-39, (1985)
[32] Gayme, D. F.; Mckeon, B. J.; Papachristodoulou, A.; Bamieh, B.; Doyle, J. C., A streamwise constant model of turbulence in plane Couette flow, J. Fluid Mech., 665, 99-119, (2010) · Zbl 1225.76149
[33] Hall, P.; Sherwin, S. J., Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures, J. Fluid Mech., 661, 178-205, (2010) · Zbl 1205.76085
[34] Hamilton, J. M.; Kim, J.; Waleffe, F., Regeneration mechanisms of near-wall turbulence structures, J. Fluid Mech., 287, 317-348, (1995) · Zbl 0867.76032
[35] Herbert, T.1976Periodic secondary motions in a plane channel. In Proc. 5th Intl Conf. Numerical Methods Fluid Dyn. (ed. De Vooren, A. I. V. & Zandbergen, P. J.), pp. 235-240. Springer.
[36] Hoyas, S.; Jiménez, J., Scaling of the velocity fluctuations in turbulent channels up to Re_𝜏 = 2003, Phys. Fluids, 18, (2006)
[37] Hoyas, S.; Jiménez, J., Reynolds number effects on the Reynolds-stress budgets in turbulent channels, Phys. Fluids, 20, (2008) · Zbl 1182.76330
[38] Hutchins, N.; Marusic, I., Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 467-477, (2007) · Zbl 1113.76004
[39] Hwang, Y.; Willis, A. P.; Cossu, C., Invariant solutions of minimal large-scale structures in turbulent channel flow for Re_𝜏 up to 1000, J. Fluid Mech., 802, R1, (2016)
[40] Jiménez, J., Bifurcations and bursting in two-dimensional Poiseuille flow, Phys. Fluids, 30, 3644-3646, (1987)
[41] Jiménez, J.1987bCoherent structures and dynamical systems. In Proc. CTR Summer School, pp. 323-324. Stanford University.
[42] Jiménez, J., Turbulent flows over rough walls, Annu. Rev. Fluid Mech., 36, 173-196, (2004) · Zbl 1125.76348
[43] Jiménez, J., Cascades in wall-bounded turbulence, Annu. Rev. Fluid Mech., 44, 27-45, (2012) · Zbl 1388.76089
[44] Jiménez, J., How linear is wall-bounded turbulence?, Phys. Fluids, 25, (2013)
[45] Jiménez, J., Near-wall turbulence, Phys. Fluids, 25, (2013)
[46] Jiménez, J., Direct detection of linearized bursts in turbulence, Phys. Fluids, 27, (2015)
[47] Jiménez, J., Optimal fluxes and Reynolds stresses, J. Fluid Mech., 809, 585-600, (2016) · Zbl 1383.76231
[48] Jiménez, J.; Hoyas, S., Turbulent fluctuations above the buffer layer of wall-bounded flows, J. Fluid Mech., 611, 215-236, (2008) · Zbl 1151.76512
[49] Jiménez, J. & Kawahara, G.2013Dynamics of wall-bounded turbulence. In Ten Chapters in Turbulence (ed. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.), pp. 221-269. Cambridge University Press.
[50] Jiménez, J.; Kawahara, G.; Simens, M. P.; Nagata, M.; Shiba, M., Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions, Phys. Fluids, 17, (2005) · Zbl 1187.76248
[51] Jiménez, J.; Moin, P., The minimal flow unit in near-wall turbulence, J. Fluid Mech., 225, 213-240, (1991) · Zbl 0721.76040
[52] Jiménez, J.; Pinelli, A., The autonomous cycle of near-wall turbulence, J. Fluid Mech., 389, 335-359, (1999) · Zbl 0948.76025
[53] Jiménez, J.; Simens, M. P., Low-dimensional dynamics of a turbulent wall flow, J. Fluid Mech., 435, 81-91, (2001) · Zbl 1022.76022
[54] Kawahara, G.; Uhlmann, M.; Van Veen, L., The significance of simple invariant solutions in turbulent flows, Annu. Rev. Fluid Mech., 44, 203-225, (2012) · Zbl 1352.76031
[55] Kim, H. T.; Kline, S. J.; Reynolds, W. C., The production of turbulence near a smooth wall in a turbulent boundary layer, J. Fluid Mech., 50, 133-160, (1971)
[56] Kim, J.; Moin, P.; Moser, R. D., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133-166, (1987) · Zbl 0616.76071
[57] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layers, J. Fluid Mech., 30, 741-773, (1967)
[58] Kolmogorov, A. N.1941The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk. SSSR30, 301-305; Reprinted in Proc. R. Soc. Lond. A 434, (1991), pp. 9-13. · JFM 67.0850.06
[59] Kraichnan, R. H., Inertial range transfer in two- and three-dimensional turbulence, J. Fluid Mech., 47, 525-535, (1971) · Zbl 0224.76053
[60] Kravchenko, A. G.; Moin, P.; Moser, R. D., Zonal embedded grids for numerical simulations of wall-bounded turbulent flows, J. Comput. Phys., 127, 412-423, (1996) · Zbl 0862.76062
[61] Landau, L. D.; Lifshitz, E. M., Statistical Mechanics, (1958), Addison-Wesley
[62] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics, (1959), Addison-Wesley
[63] Lee, M.; Moser, R. D., Direct numerical simulation of turbulent channel flow up to Re_𝜏≈ 5200, J. Fluid Mech., 774, 395-415, (2015)
[64] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 917-928, (1963)
[65] Lozano-Durán, A.; Flores, O.; Jiménez, J., The three-dimensional structure of momentum transfer in turbulent channels, J. Fluid Mech., 694, 100-130, (2012) · Zbl 1250.76108
[66] Lozano-Durán, A.; Jiménez, J., Effect of the computational domain on direct simulations of turbulent channels up to Re_𝜏 = 4200, Phys. Fluids, 26, (2014)
[67] Lozano-Durán, A.; Jiménez, J., Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascade, J. Fluid Mech., 759, 432-471, (2014)
[68] Lu, S. S.; Willmarth, W. W., Measurements of the structure of the Reynolds stress in a turbulent boundary layer, J. Fluid Mech., 60, 481-511, (1973)
[69] Lumley, J.; Blossey, P., Control of turbulence, Annu. Rev. Fluid Mech., 30, 311-327, (1998) · Zbl 1398.76083
[70] Malkus, W. V. R., Outline of a theory of turbulent shear flow, J. Fluid Mech., 1, 521-539, (1956) · Zbl 0073.20803
[71] Marusic, I.; Mathis, R.; Hutchins, N., Predictive model for wall-bounded turbulent flow, Science, 329, 193-196, (2010) · Zbl 1226.76015
[72] Marusic, I.; Monty, J. P.; Hultmark, M.; Smits, A. J., On the logarithmic region in wall turbulence, J. Fluid Mech., 716, R3, (2013) · Zbl 1284.76206
[73] Mckeon, B. J., The engine behind (wall) turbulence: perspectives on scale interactions, J. Fluid Mech., 817, P1, (2017) · Zbl 1383.76239
[74] Mckeon, B. J.; Sharma, A. S., A critical-layer framework for turbulent pipe flow, J. Fluid Mech., 658, 336-382, (2010) · Zbl 1205.76138
[75] Mezić, I., Analysis of fluid flows via the spectral properties of the Koopman operator, Annu. Rev. Fluid Mech., 45, 357-378, (2013) · Zbl 1359.76271
[76] Mizuno, Y.; Jiménez, J., Mean velocity and length-scales in the overlap region of wall-bounded turbulent flows, Phys. Fluids, 23, (2011)
[77] Mizuno, Y.; Jiménez, J., Wall turbulence without walls, J. Fluid Mech., 723, 429-455, (2013) · Zbl 1287.76137
[78] Moin, P.; Kim, J., Numerical investigation of turbulent channel flow, J. Fluid Mech., 118, 341-377, (1982) · Zbl 0491.76058
[79] Moin, P.; Moser, R. D., Characteristic-eddy decomposition of turbulence in a channel, J. Fluid Mech., 200, 471-509, (1989) · Zbl 0659.76062
[80] Moisy, F.; Jiménez, J., Geometry and clustering of intense structures in isotropic turbulence, J. Fluid Mech., 513, 111-133, (2004) · Zbl 1107.76328
[81] Nagata, M., Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity, J. Fluid Mech., 217, 519-527, (1990)
[82] Oberlack, M., A unified approach for symmetries in plane parallel turbulent shear flows, J. Fluid Mech., 427, 299-328, (2001) · Zbl 1007.76067
[83] Onsager, L., Statistical hydrodynamics, Nuovo Cimento Suppl., 6, 279-286, (1949)
[84] Orlandi, P.; Jiménez, J., On the generation of turbulent wall friction, Phys. Fluids, 6, 634-641, (1994)
[85] Örlü, R.; Fiorini, T.; Segalini, A.; Bellani, G.; Talamelli, A.; Alfredsson, P. H., Reynolds stress scaling in pipe flow turbulence – first results from CICLoPE, Phil. Trans. R. Soc. Lond. A, 375, (2017)
[86] Orr, W. M., The stability or instability of the steady motions of a perfect liquid, and of a viscous liquid. Part I: a perfect liquid, Proc. R. Irish Acad. A, 27, 9-68, (1907)
[87] Osawa, K. & Jiménez, J.2018 Intense structures of different momentum fluxes in turbulent channels. J. Phys.: Conf. Ser. (to appear).
[88] Pearson, K., On lines and planes of closest fit to systems of points in space, Phil. Mag., 6, 559-572, (1901) · JFM 32.0710.04
[89] Perry, A. E.; Henbest, S.; Chong, M. S., A theoretical and experimental study of wall turbulence, J. Fluid Mech., 165, 163-199, (1986) · Zbl 0597.76052
[90] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech., 34, 349-374, (2002) · Zbl 1006.76041
[91] Pirozzoli, S.; Bernardini, M.; Orlandi, P., Turbulence statistics in Couette flow at high Reynolds number, J. Fluid Mech., 758, 327-343, (2014)
[92] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002
[93] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes, (1986), Cambridge University Press · Zbl 0587.65005
[94] Prigogine, I., Time, structure, and fluctuations, Science, 201, 777-785, (1978)
[95] Pujals, G.; García-Villalba, M.; Cossu, C.; Depardon, S., A note on optimal transient growth in turbulent channel flow, Phys. Fluids, 21, (2009) · Zbl 1183.76425
[96] Pumir, A., Turbulence in homogeneous shear flows, Phys. Fluids, 8, 3112-3127, (1996) · Zbl 1027.76582
[97] Reynolds, W. C.; Tiederman, W. G., Stability of turbulent channel flow, with application to Malkus’ theory, J. Fluid Mech., 27, 253-272, (1967)
[98] Richardson, L. F., The supply of energy from and to atmospheric eddies, Proc. R. Soc. Lond. A, 97, 354-373, (1920)
[99] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 601-639, (1991)
[100] Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Tech. Memo 81315.
[101] Rogers, M. M.; Moin, P., The structure of the vorticity field in homogeneous turbulent flows, J. Fluid Mech., 176, 33-66, (1987)
[102] Rowley, C. W.; Dawson, S. T. M., Model reduction for flow analysis and control, Annu. Rev. Fluid Mech., 49, 387-417, (2017) · Zbl 1359.76111
[103] Ruelle, D., Statistical Mechanics: Thermodynamic Formalism, (1978), Addison-Wesley
[104] Schmid, P. J., Nonmodal stability theory, Annu. Rev. Fluid Mech., 39, 129-162, (2007) · Zbl 1296.76055
[105] Schmid, P. J.; Henningson, D. S., Stability and Transition in Shear Flows, (2001), Springer · Zbl 0966.76003
[106] Schoppa, W.; Hussain, F., Coherent structure generation in near-wall turbulence, J. Fluid Mech., 453, 57-108, (2002) · Zbl 1141.76408
[107] Sekimoto, A.; Dong, S.; Jiménez, J., Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows, Phys. Fluids, 28, (2016)
[108] Sekimoto, A.; Jiménez, J., Vertically localised equilibrium solutions in large-eddy simulations of homogeneous shear flow, J. Fluid Mech., 827, 225-249, (2017)
[109] Shannon, C. E.; Weaver, W., The Mathematical Theory of Communication, (1949), University of Illinois Press · Zbl 0041.25804
[110] Sillero, J.2014 High Reynolds numbers turbulent boundary layers. PhD thesis, U. Politécnica Madrid. · Zbl 1284.76007
[111] Sillero, J. A.; Jiménez, J.; Moser, R. D., One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+≈ 2000, Phys. Fluids, 25, (2013)
[112] Sillero, J. A.; Jiménez, J.; Moser, R. D., Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿+≈ 2000, Phys. Fluids, 26, (2014)
[113] Sirovich, L., Turbulence and the dynamics of coherent structures, Q. Appl. Maths, 45, 561-590, (1987) · Zbl 0676.76047
[114] Smits, A. J.; Mckeon, B. J.; Marusic, I., High-Reynolds number wall turbulence, Annu. Rev. Fluid Mech., 43, 353-375, (2011) · Zbl 1299.76002
[115] Sreenivasan, K. R., Fractals and multifractals in fluid turbulence, Annu. Rev. Fluid Mech., 23, 539-600, (1991)
[116] Stauffer, D.; Aharony, A., Introduction to Percolation Theory, (1994), Taylor and Francis
[117] Stretch, D. D.1990 Automated pattern eduction from turbulent flow diagnostics. CTR Ann. Res. Briefs, pp. 145-157. Stanford University.
[118] Swearingen, J. D.; Blackwelder, R. F., The growth and breakdown of streamwise vortices in the presence of a wall, J. Fluid Mech., 182, 255-290, (1987)
[119] Tennekes, H.; Lumley, J. L., A First Course in Turbulence, (1972), MIT Press · Zbl 0285.76018
[120] Toh, S.; Itano, T., Interaction between a large-scale structure and near-wall structures in channel flow, J. Fluid Mech., 524, 249-262, (2005) · Zbl 1065.76553
[121] Townsend, A. A., Equilibrium layers and wall turbulence, J. Fluid Mech., 11, 97-120, (1961) · Zbl 0127.42602
[122] Townsend, A. A., The Structure of Turbulent Shear Flow, (1976), Cambridge University Press · Zbl 0325.76063
[123] Tuerke, F.; Jiménez, J., Simulations of turbulent channels with prescribed velocity profiles, J. Fluid Mech., 723, 587-603, (2013) · Zbl 1287.76140
[124] Voltaire, F., Dictionnaire Philosophique: Atomes, (1994), Oxford University Press
[125] Waleffe, F., On a self-sustaining process in shear flows, Phys. Fluids, 9, 883-900, (1997)
[126] Waleffe, F., Exact coherent structures in channel flow, J. Fluid Mech., 435, 93-102, (2001) · Zbl 0987.76034
[127] Wallace, J. M.; Eckelman, H.; Brodkey, R. S., The wall region in turbulent shear flow, J. Fluid Mech., 54, 39-48, (1972)
[128] Whitham, G. B., Linear and Nonlinear Waves, (1974), Wiley · Zbl 0373.76001
[129] Wiener, N., Cybernetics, (1961), MIT Press
[130] Wu, X.; Moin, P.; Wallace, J. M.; Skarda, J.; Lozano-Durán, A.; Hickey, J.-P., Transitional – turbulent spots and turbulent – turbulent spots in boundary layers, Proc. Natl Acad. Sci. USA, 114, E5292-E5299, (2017)
[131] Wu, J.; Zhou, Y.; Lu, X.; Fan, M., Turbulent force as a diffusive field with vortical forces, Phys. Fluids, 11, 627-635, (1999) · Zbl 1147.76538
[132] Zare, A.; Jovanović, M. R.; Georgiou, T. T., Colour of turbulence, J. Fluid Mech., 812, 636-680, (2017) · Zbl 1383.76303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.