×

zbMATH — the first resource for mathematics

Simultaneous skin friction and velocity measurements in high Reynolds number pipe and boundary layer flows. (English) Zbl 1419.76300
Summary: Streamwise velocity and wall-shear stress are acquired simultaneously with a hot-wire and an array of azimuthal/spanwise-spaced skin friction sensors in large-scale pipe and boundary layer flow facilities at high Reynolds numbers. These allow for a correlation analysis on a per-scale basis between the velocity and reference skin friction signals to reveal which velocity-based turbulent motions are stochastically coherent with turbulent skin friction. In the logarithmic region, the wall-attached structures in both the pipe and boundary layers show evidence of self-similarity, and the range of scales over which the self-similarity is observed decreases with an increasing azimuthal/spanwise offset between the velocity and the reference skin friction signals. The present empirical observations support the existence of a self-similar range of wall-attached turbulence, which in turn are used to extend the model of W. J. Baars [ibid. 823, R2 (2017; Zbl 1419.76299)] to include the azimuthal/spanwise trends. Furthermore, the region where the self-similarity is observed correspond with the wall height where the mean momentum equation formally admits a self-similar invariant form, and simultaneously where the mean and variance profiles of the streamwise velocity exhibit logarithmic dependence. The experimental observations suggest that the self-similar wall-attached structures follow an aspect ratio of \(7:1:1\) in the streamwise, spanwise and wall-normal directions, respectively.

MSC:
76F40 Turbulent boundary layers
PDF BibTeX Cite
Full Text: DOI
References:
[1] Adrian, R. J.; Meinhart, C. D.; Tomkins, C. D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, (2000) · Zbl 0959.76503
[2] Ahn, J.; Lee, J. H.; Lee, J.; Kang, J.; Sung, H. J., Direct numerical simulation of a 30R long turbulent pipe flow at Re_{𝜏} = 3008, Phys. Fluids, 27, 6, (2015)
[3] Alfredsson, P. H.; Johansson, A. V.; Haritonidis, J. H.; Eckelmann, H., The fluctuating wall-shear stress and the velocity field in the viscous sublayer, Phys. Fluids, 31, 5, 1026-1033, (1988)
[4] Baars, W. J.; Hutchins, N.; Marusic, I., Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model, Phys. Rev. Fluids, 1, 5, (2016)
[5] Baars, W. J.; Hutchins, N.; Marusic, I., Self-similarity of wall-attached turbulence in boundary layers, J. Fluid Mech., 823, R2, (2017)
[6] Baidya, R.; Philip, J.; Hutchins, N.; Monty, J. P.; Marusic, I., Distance-from-the-wall scaling of turbulent motions in wall-bounded flows, Phys. Fluids, 29, 2, (2017)
[7] Bellani, G.; Talamelli, A., The final design of the long pipe in CICLoPE, Progress in Turbulence VI, 205-209, (2016), Springer
[8] Bendat, J. S.; Piersol, A. G., Random Data: Analysis and Measurement Procedures, (2010), John Wiley & Sons · Zbl 1187.62204
[9] Chandran, D.; Baidya, R.; Monty, J. P.; Marusic, I., Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers, J. Fluid Mech., 826, R1, (2017)
[10] Chauhan, K.; Philip, J.; de Silva, C. M.; Hutchins, N.; Marusic, I., The turbulent/non-turbulent interface and entrainment in a boundary layer, J. Fluid Mech., 742, 119-151, (2014)
[11] Chung, D.; Marusic, I.; Monty, J. P.; Vallikivi, M.; Smits, A. J., On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows, Exp. Fluids, 56, 7, 1-10, (2015)
[12] Davidson, P. A.; Krogstad, P.-Å., On the deficiency of even-order structure functions as inertial-range diagnostics, J. Fluid Mech., 602, 287-302, (2008) · Zbl 1168.76325
[13] del Álamo, J. C.; JimĂ©nez, J., Estimation of turbulent convection velocities and corrections to Taylor’s approximation, J. Fluid Mech., 640, 5-26, (2009) · Zbl 1183.76761
[14] del Álamo, J. C.; JimĂ©nez, J.; Zandonade, P.; Moser, R. D., Scaling of the energy spectra of turbulent channels, J. Fluid Mech., 500, 135-144, (2004) · Zbl 1059.76031
[15] del Álamo, J. C.; JimĂ©nez, J.; Zandonade, P.; Moser, R. D., Self-similar vortex clusters in the turbulent logarithmic region, J. Fluid Mech., 561, 329-358, (2006) · Zbl 1157.76346
[16] Hellström, L. H.; Marusic, I.; Smits, A. J., Self-similarity of the large-scale motions in turbulent pipe flow, J. Fluid Mech., 792, (2016) · Zbl 1381.76119
[17] Hutchins, N.; Marusic, I., Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 1-28, (2007) · Zbl 1113.76004
[18] Hutchins, N.; Marusic, I., Large-scale influences in near-wall turbulence, Phil. Trans. R. Soc. Lond. A, 365, 647-664, (2007) · Zbl 1152.76421
[19] Hutchins, N.; Monty, J. P.; Ganapathisubramani, B.; Ng, H. C. H.; Marusic, I., Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer, J. Fluid Mech., 673, 255-285, (2011) · Zbl 1225.76161
[20] Hutchins, N.; Nickels, T. B.; Marusic, I.; Chong, M. S., Hot-wire spatial resolution issues in wall-bounded turbulence, J. Fluid Mech., 635, 103-136, (2009) · Zbl 1183.76025
[21] Hwang, Y., Statistical structure of self-sustaining attached eddies in turbulent channel flow, J. Fluid Mech., 767, 254-289, (2015)
[22] JimĂ©nez, J., Cascades in wall-bounded turbulence, Annu. Rev. Fluid Mech., 44, 1, 27, (2011) · Zbl 1388.76089
[23] JimĂ©nez, J.; del Álamo, J. C.; Flores, O., The large-scale dynamics of near-wall turbulence, J. Fluid Mech., 505, 179-199, (2004) · Zbl 1065.76552
[24] Kim, K. C.; Adrian, R. J., Very large-scale motion in the outer layer, Phys. Fluids, 11, 2, 417-422, (1999) · Zbl 1147.76430
[25] Krug, D.; Baars, W. J.; Hutchins, N.; Marusic, I., Vertical coherence of turbulence in the atmospheric surface layer: connecting the hypotheses of Townsend and Davenport, Boundary-Layer Meteorol., (2019)
[26] Kwon, Y.
[27] Kwon, Y. S.; Hutchins, N.; Monty, J. P., On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers, J. Fluid Mech., 794, 5-16, (2016)
[28] Ligrani, P. M.; Bradshaw, P., Spatial resolution and measurments of turbulence in the viscous sublayer using subminature hot-wire probes, Exp. Fluids, 5, 407-417, (1987)
[29] Marusic, I.; McKeon, B. J.; Monkewitz, P. A.; Nagib, H. M.; Smits, A. J.; Sreenivasan, K. R., Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues, Phys. Fluids, 22, 6, (2010) · Zbl 1190.76086
[30] Marusic, I.; Monty, J. P., Attached eddy model of wall turbulence, Annu. Rev. Fluid Mech., 51, 49-74, (2019)
[31] Marusic, I.; Monty, J. P.; Hultmark, M.; Smits, A. J., On the logarithmic region in wall turbulence, J. Fluid Mech., 716, 716, (2013) · Zbl 1284.76206
[32] Mathis, R.; Hutchins, N.; Marusic, I., Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers, J. Fluid Mech., 628, 311-337, (2009) · Zbl 1181.76008
[33] Monty, J. P.
[34] Monty, J. P.; Hutchins, N.; Ng, H. C. H.; Marusic, I.; Chong, M. S., A comparison of turbulent pipe, channel and boundary layer flows, J. Fluid Mech., 632, 431-442, (2009) · Zbl 1183.76036
[35] Monty, J. P.; Stewart, J. A.; Williams, R. C.; Chong, M. S., Large-scale features in turbulent pipe and channel flows, J. Fluid Mech., 589, 147-156, (2007) · Zbl 1141.76316
[36] Morrill-Winter, C.; Philip, J.; Klewicki, J., An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers, J. Fluid Mech., 813, 594-617, (2017) · Zbl 1383.76240
[37] Nickels, T. B.; Marusic, I.; Hafez, S.; Chong, M. S., Evidence of the k_{1}-1 law in a high-Reynolds-number turbulent boundary layer, Phys. Rev. Lett., 95, 7, (2005)
[38] ÖrlĂŒ, R.; Fiorini, T.; Segalini, A.; Bellani, G.; Talamelli, A.; Alfredsson, P. H., Reynolds stress scaling in pipe flow turbulence - first results from CICLoPE, Phil. Trans. R. Soc. Lond. A, 375, 2089, (2017)
[39] Perry, A. E.; Chong, M. S., On the mechanism of wall turbulence, J. Fluid Mech., 119, 173-217, (1982) · Zbl 0517.76057
[40] Perry, A. E.; Marusic, I.; Jones, M. B., On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients, J. Fluid Mech., 461, 61-91, (2002) · Zbl 1049.76032
[41] Piomelli, U.; Balint, J.-L.; Wallace, J. M., On the validity of Taylor’s hypothesis for wall-bounded flows, Phys. Fluids, 1, 3, 609-611, (1989) · Zbl 1222.76060
[42] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 1, 601-639, (1991)
[43] Sillero, J. A.; JimĂ©nez, J.; Moser, R. D., Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿+ ≈ 2000, Phys. Fluids, 26, 10, (2014)
[44] de Silva, C. M.; Gnanamanickam, E. P.; Atkinson, C.; Buchmann, N. A.; Hutchins, N.; Soria, J.; Marusic, I., High spatial range velocity measurements in a high Reynolds number turbulent boundary layer, Phys. Fluids, 26, 2, (2014)
[45] de Silva, C. M.; Marusic, I.; Woodcock, J. D.; Meneveau, C., Scaling of second- and higher-order structure functions in turbulent boundary layers, J. Fluid Mech., 769, 654-686, (2015)
[46] Smits, A. J.; McKeon, B. J.; Marusic, I., High-Reynolds number wall turbulence, Annu. Rev. Fluid Mech., 43, 353-375, (2011) · Zbl 1299.76002
[47] Talamelli, A.; Persiani, F.; Fransson, J. H. M.; Alfredsson, P. H.; Johansson, A. V.; Nagib, H. M.; RĂŒedi, J.; Sreenivasan, K. R.; Monkewitz, P. A., CICLoPE - a response to the need for high Reynolds number experiments, Fluid Dyn. Res., 41, 2, (2009) · Zbl 1286.76010
[48] Taylor, G. I., The spectrum of turbulence, Proc. R. Soc. Lond. A, 164, 919, 476-490, (1938) · JFM 64.1454.02
[49] Tennekes, H.; Lumley, J. L., A First Course in Turbulence, (1972), MIT Press · Zbl 0285.76018
[50] Townsend, A. A., The Structure of Turbulent Shear Flow, (1976), Cambridge University Press · Zbl 0325.76063
[51] Wei, T.; Fife, P.; Klewicki, J.; McMurtry, P., Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows, J. Fluid Mech., 522, 303-327, (2005) · Zbl 1065.76106
[52] Willert, C. E.; Soria, J.; Stanislas, M.; Klinner, J.; Amili, O.; Eisfelder, M.; Cuvier, C.; Bellani, G.; Fiorini, T.; Talamelli, A., Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000, J. Fluid Mech., 826, (2017)
[53] Yang, X. I. A.; Baidya, R.; Johnson, P.; Marusic, I.; Meneveau, C., Structure function tensor scaling in the logarithmic region derived from the attached eddy model of wall-bounded turbulent flows, Phys. Rev. Fluids, 2, 6, (2017)
[54] Zagarola, M. V.; Smits, A. J., Mean-flow scaling of turbulent pipe flow, J. Fluid Mech., 373, 33-79, (1998) · Zbl 0941.76510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.