zbMATH — the first resource for mathematics

A Lagrangian fluctuation-dissipation relation for scalar turbulence. III: Turbulent Rayleigh-Bénard convection. (English) Zbl 1419.76286
Summary: A Lagrangian fluctuation-dissipation relation has been derived in a previous work to describe the dissipation rate of advected scalars, both passive and active, in wall-bounded flows. We apply this relation here to develop a Lagrangian description of thermal dissipation in turbulent Rayleigh-Bénard convection in a right-cylindrical cell of arbitrary cross-section, with either imposed temperature difference or imposed heat flux at the top and bottom walls. We obtain an exact relation between the steady-state thermal dissipation rate and the time \(\tau_{mix}\) for passive tracer particles released at the top or bottom wall to mix to their final uniform value near those walls. We show that an ‘ultimate regime’ with the Nusselt number scaling predicted by E. A. Spiegel [“Convection in stars. Part I. Basic Boussinesq convection”, Annu. Rev. Astron. 9, 323–352 (1971; doi:10.1146/annurev.aa.09.090171.001543)] or, with a log correction, by R. H. Kraichman [Phys. Fluids 5, 1374–1389 (1962; Zbl 0116.42803)] will occur at high Rayleigh numbers, unless this near-wall mixing time is asymptotically much longer than the free-fall time \(\tau_{free}\). Precisely, we show that \(\tau_{mix}/ \tau_{free}=(RaPr)^{1/2}/Nu,\) with \(Ra\) the Rayleigh number, \(Pr\) the Prandtl number, and \(Nu\) the Nusselt number. We suggest a new criterion for an ultimate regime in terms of transition to turbulence of a thermal ’mixing zone’, which is much wider than the standard thermal boundary layer. Kraichnan-Spiegel scaling may, however, not hold if the intensity and volume of thermal plumes decrease sufficiently rapidly with increasing Rayleigh number. To help resolve this issue, we suggest a program to measure the near-wall mixing time \(\tau_{mix}\), which is precisely defined in the paper and which we argue is accessible both by laboratory experiment and by numerical simulation.

76F35 Convective turbulence
76R10 Free convection
Full Text: DOI
[1] Ahlers, G.; Grossmann, S.; Lohse, D., Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection, Rev. Mod. Phys., 81, 2, 503-537, (2009)
[2] Berg, J.; Lüthi, B.; Mann, J.; Ott, S., Backwards and forwards relative dispersion in turbulent flow: an experimental investigation, Phys. Rev. E, 74, (2006)
[3] Bergé, P.; Dubois, M., Rayleigh-Bénard convection, Contemp. Phys., 25, 6, 535-582, (1984)
[4] Buaria, D.; Yeung, P. K.; Sawford, B. L., A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence, J. Fluid Mech., 799, 352-382, (2016)
[5] Calzavarini, E.; Doering, C. R.; Gibbon, J. D.; Lohse, D.; Tanabe, A.; Toschi, F., Exponentially growing solutions in homogeneous Rayleigh-Bénard convection, Phys. Rev. E, 73, 3, (2006)
[6] Castaing, B.; Gunaratne, G.; Kadanoff, L. P.; Libchaber, A.; Heslot, F., Scaling of hard thermal turbulence in Rayleigh-Bénard convection, J. Fluid Mech., 204, 1, 1-30, (1989)
[7] Celani, A.; Cencini, M.; Mazzino, A.; Vergassola, M., Active and passive fields face to face, New J. Phys., 6, 1, 72, (2004)
[8] Chertkov, M.; Lebedev, V., Decay of scalar turbulence revisited, Phys. Rev. Lett., 90, 3, (2003)
[9] Chillà, F.; Schumacher, J., New perspectives in turbulent Rayleigh-Bénard convection, Eur. Phys. J. E, 35, 7, 1-25, (2012)
[10] Doering, C. R.; Constantin, P., Variational bounds on energy dissipation in incompressible flows. Part III. Convection, Phys. Rev. E, 53, 6, 5957, (1996)
[11] Donzis, D. A.; Sreenivasan, K. R.; Yeung, P. K., Scalar dissipation rate and dissipative anomaly in isotropic turbulence, J. Fluid Mech., 532, 199-216, (2005) · Zbl 1125.76346
[12] Drivas, T. D.; Eyink, G. L., A Lagrangian fluctuation – dissipation relation for scalar turbulence. Part I. Flows with no bounding walls, J. Fluid Mech., 829, 153-189, (2017)
[13] Drivas, T. D.; Eyink, G. L., A Lagrangian fluctuation – dissipation relation for scalar turbulence. Part II. Wall-bounded flows, J. Fluid Mech., 829, 236-279, (2017)
[14] Emran, M. S.; Schumacher, J., Fine-scale statistics of temperature and its derivatives in convective turbulence, J. Fluid Mech., 611, 13-34, (2008) · Zbl 1151.76509
[15] Emran, M. S.; Schumacher, J., Conditional statistics of thermal dissipation rate in turbulent Rayleigh-Bénard convection, Eur. Phys. J. E, 35, 10, 1-8, (2012)
[16] Eyink, G. L., Dissipative anomalies in singular Euler flows, Physica D, 237, 14, 1956-1968, (2008) · Zbl 1143.76403
[17] Eyink, G. L., Stochastic flux freezing and magnetic dynamo, Phys. Rev. E, 83, 5, (2011)
[18] Falkovich, G.; Gawȩdzki, K.; Vergassola, M., Particles and fields in fluid turbulence, Rev. Mod. Phys., 73, 4, 913, (2001) · Zbl 1205.76133
[19] Frisch, U.1986Fully developed turbulence: where do we stand? In Dynamical Systems: A Renewal of Mechanism: Centennial of Georges David Birkhoff (ed. Diner, S., Fargue, D. & Lochak, G.), pp. 13-28. World Scientific. doi:10.1142/9789814415538_0002
[20] Goluskin, D., Internally Heated Convection and Rayleigh-Bénard Convection, (2015), Springer International Publishing
[21] Grossmann, S.; Lohse, D., Scaling in thermal convection: a unifying theory, J. Fluid Mech., 407, 27-56, (2000) · Zbl 0972.76045
[22] Grossmann, S.; Lohse, D., Thermal convection for large Prandtl numbers, Phys. Rev. Lett., 86, 15, 3316, (2001)
[23] Grossmann, S.; Lohse, D., Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection, Phys. Rev. E, 66, 1, (2002)
[24] Grossmann, S.; Lohse, D., Fluctuations in turbulent Rayleigh-Bénard convection: the role of plumes, Phys. Fluids, 16, 12, 4462-4472, (2004) · Zbl 1187.76190
[25] Grossmann, S.; Lohse, D., Multiple scaling in the ultimate regime of thermal convection, Phys. Fluids, 23, 4, (2011)
[26] Grossmann, S.; Lohse, D., Logarithmic temperature profiles in the ultimate regime of thermal convection, Phys. Fluids, 24, 12, (2012)
[27] Hassanzadeh, P.; Chini, G. P.; Doering, C. R., Wall to wall optimal transport, J. Fluid Mech., 751, 627-662, (2014) · Zbl 1329.74253
[28] He, X.; Funfschilling, D.; Nobach, H.; Bodenschatz, E.; Ahlers, G., Transition to the ultimate state of turbulent Rayleigh-Bénard convection, Phys. Rev. Lett., 108, 2, (2012)
[29] He, X.; Tong, P., Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection, Phys. Rev. E, 79, 2, (2009)
[30] He, X.; Tong, P.; Xia, K.-Q., Measured thermal dissipation field in turbulent Rayleigh-Bénard convection, Phys. Rev. Lett., 98, 14, (2007)
[31] Hewitt, D. R.; Neufeld, J. A.; Lister, J. R., Ultimate regime of high Rayleigh number convection in a porous medium, Phys. Rev. Lett., 108, 22, (2012)
[32] Howard, L. N.1966Convection at high Rayleigh number. In Applied Mechanics: Proceedings of the 11th International Congress of Applied Mechanics (ed. Görtler, H.), pp. 1109-1115. Springer. doi:10.1007/978-3-662-29364-5_147
[33] Huisman, S. G., Van Der Veen, R. C. A., Sun, C. & Lohse, D.2014Multiple states in highly turbulent Taylor-Couette fiow. Nature5, 3820.
[34] Johnston, H.; Doering, C. R., Comparison of turbulent thermal convection between conditions of constant temperature and constant flux, Phys. Rev. Lett., 102, 6, (2009)
[35] Jucha, J.; Xu, H.; Pumir, A.; Bodenschatz, E., Time-reversal-symmetry breaking in turbulence, Phys. Rev. Lett., 113, 5, (2014)
[36] Kraichnan, R. H., Turbulent thermal convection at arbitrary Prandtl number, Phys. Fluids, 5, 11, 1374-1389, (1962) · Zbl 0116.42803
[37] Lebedev, V. V.; Turitsyn, K. S., Passive scalar evolution in peripheral regions, Phys. Rev. E, 69, 3, (2004)
[38] Lohse, D.; Toschi, F., Ultimate state of thermal convection, Phys. Rev. Lett., 90, 3, (2003)
[39] Malkus, W. V. R., The heat transport and spectrum of thermal turbulence, Proc. R. Soc. Lond. A, 225, 1161, 196-212, (1954) · Zbl 0058.20203
[40] Niemela, J. J.; Skrbek, L.; Sreenivasan, K. R.; Donnelly, R. J., Turbulent convection at very high Rayleigh numbers, Nature, 404, 6780, 837-840, (2000)
[41] Niemela, J. J.; Sreenivasan, K. R., Thermal fluctuations and their ordering in turbulent convection, Physica A, 315, 1, 203-214, (2002)
[42] Niemela, J. J.; Sreenivasan, K. R., Confined turbulent convection, J. Fluid Mech., 481, 355-384, (2003) · Zbl 1049.76522
[43] Niemela, J. J.; Sreenivasan, K. R., Turbulent convection at high Rayleigh numbers and aspect ratio 4, J. Fluid Mech., 557, 411-422, (2006) · Zbl 1093.76515
[44] Otero, J.; Dontcheva, L. A.; Johnston, H.; Worthing, R. A.; Kurganov, A.; Petrova, G.; Doering, C. R., High-Rayleigh-number convection in a fluid-saturated porous layer, J. Fluid Mech., 500, 263-281, (2004) · Zbl 1134.76462
[45] Otero, J.; Wittenberg, R. W.; Worthing, R. A.; Doering, C. R., Bounds on Rayleigh-Bénard convection with an imposed heat flux, J. Fluid Mech., 473, 191-199, (2002) · Zbl 1026.76048
[46] Priestley, C. H. B., Turbulent Transfer in the Lower Atmosphere, (1959), University of Chicago Press
[47] Procaccia, I.; Ching, E. S. C.; Constantin, P.; Kadanoff, L. P.; Libchaber, A.; Wu, X., Transitions in convective turbulence: the role of thermal plumes, Phys. Rev. A, 44, 12, 8091, (1991)
[48] Qiu, X.-L.; Tong, P., Temperature oscillations in turbulent Rayleigh-Bénard convection, Phys. Rev. E, 66, 2, (2002)
[49] Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications, (2012), Springer
[50] Roche, P.-E.; Gauthier, F.; Kaiser, R.; Salort, J., On the triggering of the ultimate regime of convection, New J. Phys., 12, 8, (2010)
[51] Sawford, B. L.; Yeung, P. K.; Borgas, M. S., Comparison of backwards and forwards relative dispersion in turbulence, Phys. Fluids, 17, (2005) · Zbl 1187.76466
[52] Scheel, J. D.; Schumacher, J., Local boundary layer scales in turbulent Rayleigh-Bénard convection, J. Fluid Mech., 758, 344-373, (2014)
[53] Schmidt, L. E.; Calzavarini, E.; Lohse, D.; Toschi, F.; Verzicco, R., Axially homogeneous Rayleigh-Bénard convection in a cylindrical cell, J. Fluid Mech., 691, 52-68, (2012) · Zbl 1241.76189
[54] Schumacher, J., Lagrangian dispersion and heat transport in convective turbulence, Phys. Rev. Lett., 100, 13, (2008)
[55] Siggia, E. D., High Rayleigh number convection, Annu. Rev. Fluid Mech., 26, 1, 137-168, (1994) · Zbl 0800.76425
[56] Souza, A. N.2016 An optimal control approach to bounding transport properties of thermal convection. PhD thesis, University of Michigan, Applied and Interdisciplinary Mathematics.
[57] Spiegel, E. A., Convection in stars. Part I. Basic Boussinesq convection, Annu. Rev. Astron., 9, 323, (1971)
[58] Stevens, R. J. A. M.; Lohse, D.; Verzicco, R., Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection, J. Fluid Mech., 688, 31-43, (2011) · Zbl 1241.76357
[59] Tobasco, I.; Doering, C. R., Optimal wall-to-wall transport by incompressible flows, Phys. Rev. Lett., 118, (2017)
[60] Whitehead, J. P.; Doering, C. R., Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries, Phys. Rev. Lett., 106, 24, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.