×

zbMATH — the first resource for mathematics

Optimized Schwarz methods for the optimal control of systems governed by elliptic partial differential equations. (English) Zbl 1419.65140
Summary: Optimal control of systems governed by elliptic partial differential equations (PDEs) without constraint on the set of controls can be equivalently reformulated as a coupled system of second order elliptic PDEs, which has been considered to solve by a non-overlapping Schwarz domain decomposition method with the non-coupled, the partially-coupled and the fully-coupled Robin-like transmission conditions by J.-D. Benamou [SIAM J. Numer. Anal. 33, No. 6, 2401–2416 (1996; Zbl 0916.49024)] where a convergence analysis had been performed. Towards fast convergence of the overlapping and non-overlapping Schwarz subdomain iterations, in this paper we firstly perform, for fixed Tikhonov parameter \(\mu \), rigorous analyses based on optimization of the convergence factor of subdomain iterations in Fourier frequency domain to give the optimized transmission parameters involved in the above mentioned transmission conditions, as well as those involved in a Ventcell-like and a two-sided Robin-like transmission condition that we propose to accelerate the Schwarz subdomain iterations, and meanwhile we obtain also the corresponding asymptotic convergence rate estimates. The results show that the Tikhonov parameter \(\mu \) occurs in both the optimized transmission parameters and the corresponding convergence rate estimates and affects the performance of the Schwarz domain decomposition methods significantly: when \(\mu \) is less than a certain threshold value, with the decreasing of the Tikhonov parameter \(\mu \), the subdomain iteration converges more and more fast, though the regularity of the system deteriorates in this process. We lastly investigate the case where the Tikhonov parameter \(\mu =h^4\) that is suggested by Benamou (where \(h\) is the mesh size). We obtain as well the optimized transmission parameters involved in the non-coupled, the partially-coupled and the fully-coupled Robin-like transmission conditions, and find that they lead to optimized Schwarz methods that are very robust in the mesh size. The analysis also sheds light on optimizing the Schwarz domain decomposition methods for biharmonic equations, since they can also be reformulated as a system of second order elliptic PDEs. We use various numerical experiments to illustrate the theoretical findings.
MSC:
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
49M99 Numerical methods in optimal control
49J20 Existence theories for optimal control problems involving partial differential equations
93C20 Control/observation systems governed by partial differential equations
65K10 Numerical optimization and variational techniques
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
35J15 Second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Benamou, JD, Domain decomposition methods with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations, C. R. Acad. Sci. Paris, 317, 205-209, (1993) · Zbl 0781.49014
[2] Benamou, JD, A domain decomposition method with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations, SIAM J. Numer. Anal., 33, 2401-2416, (1996) · Zbl 0916.49024
[3] Benamou, JD, Domain decomposition, optimal control of systems governed by partial differential equations, and synthesis of feedback laws, J. Optim. Theory Appl., 102, 15-36, (1999) · Zbl 0946.49025
[4] Benamou, JD; Despres, B., A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys., 136, 68-82, (1997) · Zbl 0884.65118
[5] Bennequin, D.; Gander, MJ; Halpern, L., A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Math. Comp., 78, 185-223, (2009) · Zbl 1198.65179
[6] Blayo, E.; Cherel, D.; Rousseau, A., Towards optimized Schwarz methods for the Navier-Stokes equations, J. Sci. Comput., 66, 275-295, (2016) · Zbl 1381.76254
[7] Bouajaji, ME; Dolean, V.; Gander, MJ; Lanteri, S., Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, SIAM J. Sci. Comput., 34, a2048-a2071, (2012) · Zbl 1259.78047
[8] Chang, H.; Yang, D., A Schwarz domain decomposition method with gradient projection for optimal control governed by elliptic partial differential equations, J. Comput. Appl. Math., 235, 5078-5094, (2011) · Zbl 1226.65060
[9] Chen, Z.; Gander, MJ; Zhang, H.; Dickopf, T. (ed.); Gander, MJ (ed.); Halpern, L. (ed.); Krause, R. (ed.); Pavarino, LF (ed.), On the relation between optimized Schwarz methods and source transfer, 217-225, (2016), Berlin · Zbl 1339.65230
[10] Chen, Z.; Xiang, X., A source transfer domain decomposition method for Helmholtz equations in unbounded domain, SIAM J. Numer. Anal., 51, 2331-2356, (2013) · Zbl 1285.65082
[11] Discacciati, M.; Gerardo-Giorda, L., Optimized Schwarz methods for the Stokes-Darcy coupling, IMA J. Numer. Aanal., 38, 1959-1983, (2018) · Zbl 06983868
[12] Dolean, V.; Gander, MJ; Gerardo-Giorda, L., Optimized Schwarz methods for Maxwell’s equations, SIAM J. Sci. Comput., 31, 2193-2213, (2009) · Zbl 1192.78044
[13] Dubois, O.; Gander, MJ; Loisel, S.; St-Cyr, A.; Szyld, DB, The optimized schwarz method with a coarse grid correction, SIAM J. Sci. Comput., 34, a421-a458, (2012) · Zbl 1248.65127
[14] Engquist, B.; Ying, L., Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers, Multiscale Mode. Simul., 9, 686-710, (2011) · Zbl 1228.65234
[15] Gander, MJ, Optimized Schwarz methods, SIAM J. Numer. Anal., 44, 699-731, (2006) · Zbl 1117.65165
[16] Gander, MJ, Schwarz methods over the course of time, Electron. Trans. Numer. Anal., 31, 228-255, (2008) · Zbl 1171.65020
[17] Gander, MJ; Halpern, L., Absorbing boundary conditions for the wave equation and parallel computing, Math. Comp., 74, 153-176, (2005) · Zbl 1074.65114
[18] Gander, MJ; Halpern, L., Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems, SIAM J. Numer. Anal., 45, 666-697, (2007) · Zbl 1140.65063
[19] Gander, MJ; Halpern, L.; Nataf, F., Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal., 41, 1643-1681, (2003) · Zbl 1085.65077
[20] Gander, MJ; Liu, Y.; Lee, CO (ed.); Cai, XC (ed.); Keyes, DE (ed.); Kim, HH (ed.); Klawonn, A. (ed.); Park, EJ (ed.); Widlund, OB (ed.), On the definition of dirichlet and neumann conditions for the biharmonic equation and its impact on associated schwarz methods, 303-311, (2017), Cham · Zbl 1367.65182
[21] Gander, MJ; Magoulès, F.; Nataf, F., Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput., 24, 38-60, (2002) · Zbl 1021.65061
[22] Gander, MJ; Xu, Y., Optimized schwarz methods for circular domain decompositions with overlap, SIAM J. Numer. Anal., 52, 1981-2004, (2014) · Zbl 1304.65261
[23] Gander, MJ; Xu, Y., Optimized Schwarz methods for model problems with continuously variable coefficients, SIAM J. Sci. Comput., 38, a2964-a2986, (2016) · Zbl 1348.65138
[24] Gander, MJ; Xu, Y.; Lee, CO (ed.); etal., Optimized Schwarz methods for domain decompositions with parabolic interfaces, 323-332, (2017), Cham · Zbl 1367.65184
[25] Gander, MJ; Xu, Y., Optimized Schwarz methods with nonoverlapping circular domain decompositions, Math. Comp., 86, 637-660, (2017) · Zbl 1355.65167
[26] Heinkenschloss, M.; Nguyen, H., Balancing Neumann-Neumann methods for elliptic optimal control problems, No. 40, 589-596, (2005), Berlin, Heidelberg · Zbl 1066.65072
[27] Heinkenschloss, M.; Nguyen, H., Neumann-Neumann domain decomposition preconditioners for linear-quadratic elliptic optimal control problems, SIAM J. Sci. Comput., 28, 1001-1028, (2006) · Zbl 1120.49025
[28] Herzog, R.; Rheinbach, O.; Erhel, J. (ed.); Gander, MJ (ed.); Halpern, L. (ed.); Pichot, G. (ed.); Sassi, T. (ed.); Widlund, O. (ed.), FETI-DP methods for optimal control problems, 387-395, (2014), Cham
[29] Hou, LS; Lee, J., A Robin-Robin non-overlapping domain decomposition method for an elliptic boundary control problem, Int. J. Numer. Anal. Model., 8, 443-465, (2011) · Zbl 1263.65060
[30] Japhet, C.: Domain decomposition methods and artificial boundary conditions in fluid dynamics: Optimized Order 2 method. Ph.D. thesis, Université Paris 13 (1998)
[31] Lagnese, J.E., Leugering, G.: Domain Decomposition for Elliptic Optimal Control Problems, pp. 107-129. Birkhäuser, Basel, Basel (2004) · Zbl 1059.49002
[32] Lions, J.L.: Contrôle Optimal De Systemes Gouvernés Par Des Équations Aux Dérivées Partielles. Dunod (1968) · Zbl 0179.41801
[33] Lions, P.L.: On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, vol. 6, pp. 202-223. SIAM, Philadelphia, PA (1990) · Zbl 0704.65090
[34] Magouls, F.; Ivnyi, P.; Topping, B., Non-overlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation, Comput. Methods Appl. Mech. Eng., 193, 4797-4818, (2004) · Zbl 1112.74444
[35] Martin, V., An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Appl. Numer. Math., 52, 401-428, (2005) · Zbl 1070.65088
[36] Pearson, JW; Stoll, M., Fast iterative solution of reaction-diffusion control problems arising from chemical processes, SIAM J. Sci. Comput., 35, 987-1009, (2013) · Zbl 1281.65095
[37] Qin, L.; Xu, X., Optimized Schwarz methods with Robin transmission conditions for parabolic problems, SIAM J. Sci. Comput., 31, 608-623, (2008) · Zbl 1185.65181
[38] Rees, T.; Dollar, HS; Wathen, AJ, Optimal solvers for PDE-constrained optimization, SIAM J. Sci. Comput., 32, 271-298, (2010) · Zbl 1208.49035
[39] Rees, T.; Stoll, M., Block-triangular preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 17, 977-996, (2010) · Zbl 1240.65097
[40] Schwarz, HA, Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15, 272-286, (1870)
[41] Shang, YQ; He, YN, Fourier analysis of schwarz domain decomposition methods for the biharmonic equation, Appl. Math. Mech., 30, 1177-1182, (2009) · Zbl 1195.65198
[42] Xu, Y., The influence of domain truncation on the performance of optimized Schwarz methods, Electron. Trans. Numer. Anal., 49, 182-209, (2018) · Zbl 1404.65303
[43] Xu, Y., Optimized Schwarz methods with Ventcell transmission conditions for model problems with continuously variable coefficients, J. Comput. Appl. Math., 334, 97-110, (2018) · Zbl 1380.65408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.