zbMATH — the first resource for mathematics

Connes-amenability of \(WAP(\mathfrak B^*)^*\). (English) Zbl 1419.46031
Summary: For a Banach algebra \(\mathfrak B\), the set of weakly almost periodic functions on \(\mathfrak B\) is denoted by \(WAP(\mathfrak B^*)\). It is known that amenability of \(\mathfrak B\) yields Connes-amenability of \(WAP(\mathfrak B^*)^*\). The converse is not generally true though. We prove that under certain assumptions, \(\mathfrak B\) is amenable if and only if \(WAP(\mathfrak B^*)^*\) is Connes-amenable. As a result, we show that for a reflexive Banach space \(E\) with the approximation property, \(K(E)\) is amenable if and only if \(WAP(K(E)^*)^*\) is Connes-amenable.
46H20 Structure, classification of topological algebras
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
47L10 Algebras of operators on Banach spaces and other topological linear spaces
Full Text: DOI
[1] Daws, M., Dual Banach algebras: representations and injectivity, Studia Math., 178, 231-275, (2007) · Zbl 1115.46038
[2] Daws, M., Multipliers, self-induced and dual Banach algebras, Dissertationes Mathematicae., 470, 62, (2010) · Zbl 1214.43004
[3] Eymard, P., L’alg\(\grave{e}\)bre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92, 181-236, (1964) · Zbl 0169.46403
[4] Effros, E.G., Ruan, Z.-J.: Operator Spaces. Clarendon Press, UK (2000) · Zbl 0969.46002
[5] Forrest, B.; Runde, V., Amenability and weak amenability of the Fourier algebra, Mathematische Zeitschrift., 250, 731-744, (2005) · Zbl 1080.22002
[6] Hayati, B.; Amini, M., Dual multiplier Banach algebras and Connes-amenability, Publ. Math. Debrecen., 8, 169-182, (2015) · Zbl 1349.46049
[7] Helemskii, A. Ya, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule, Math. USSR-Sb, 68, 555-566, (1991) · Zbl 0721.46041
[8] Johnson, BE, An introduction to the theory of centralizers, Proc. Lond. Math. Soc., 14, 299-320, (1964) · Zbl 0143.36102
[9] Johnson, B. E.: Cohomology in Banach algebras. Mem. Am. Math. Soc. 127 (1972) · Zbl 0256.18014
[10] Johnson, BE, Weak amenability of group algebras, Bull. Lond. Math. Soc., 23, 281-284, (1991) · Zbl 0757.43002
[11] Johnson, BE; Kadison, RV; Ringrose, JR, Cohomology of operator algebras III, Bull. Soc. Math. France, 100, 73-96, (1972) · Zbl 0234.46066
[12] Larsen, R.: An Introduction to the Theory of Multipliers. Springer, Berlin (1971) · Zbl 0213.13301
[13] Ruan, Z-J, The operator amenability of \(A(G)\), Am. J. Math., 117, 1449-1474, (1995) · Zbl 0842.43004
[14] Rudin, W.: Functional Analysis. McGrew-Hill, New York (1991) · Zbl 0867.46001
[15] Runde, V., Amenability for dual Banach algebras, Studia Math., 148, 47-66, (2001) · Zbl 1003.46028
[16] Runde, V.: Lectures on Amenability. Lecture Notes in Mathematics, vol. 1774. Springer, Berlin (2002) · Zbl 0999.46022
[17] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras (I), J. Lond. Math. Soc., 67, 643-656, (2003) · Zbl 1040.22002
[18] Runde, V., Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand., 95, 124-144, (2004) · Zbl 1087.46035
[19] Szankowski, A., \(B(H)\) does not have the approximation property, Acta. Math., 147, 89-108, (1981) · Zbl 0486.46012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.