×

Production of purely gravitational dark matter: the case of fermion and vector boson. (English) Zbl 1418.83074

Summary: We consider the simplest possibility for a model of particle dark matter in which dark matter has only gravitational interaction with the standard model sector. Even in such a case, it is known that the gravitational particle production in an expanding universe may lead to a correct relic abundance depending on the ination scale and the mass of dark matter particle. We provide a comprehensive and systematic analysis of the gravitational particle production of fermionic and vectorial dark matter, and emphasize that particles which are much heavier than the Hubble parameter but lighter than inaton can also be produced abundantly.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] L. Parker, Quantized fields and particle creation in expanding universes. 1., Phys. Rev.183 (1969) 1057 [INSPIRE]. · Zbl 0186.58603
[2] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982). · Zbl 0476.53017 · doi:10.1017/CBO9780511622632
[3] L.H. Ford, Gravitational particle creation and inflation, Phys. Rev.D 35 (1987) 2955 [INSPIRE].
[4] D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev.D 59 (1999) 023501 [hep-ph/9802238] [INSPIRE].
[5] D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev.D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].
[6] G. Alonso- Álvarez and J. Jaeckel, Lightish but clumpy: scalar dark matter from inflationary fluctuations, JCAP10 (2018) 022 [arXiv:1807.09785] [INSPIRE]. · Zbl 07462547
[7] T. Markkanen, A. Rajantie and T. Tenkanen, Spectator dark matter, Phys. Rev.D 98 (2018) 123532 [arXiv:1811.02586] [INSPIRE].
[8] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational effects on inflaton decay, JCAP05 (2015) 038 [arXiv:1502.02475] [INSPIRE]. · doi:10.1088/1475-7516/2015/05/038
[9] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational particle production in oscillating backgrounds and its cosmological implications, Phys. Rev.D 94 (2016) 063517 [arXiv:1604.08898] [INSPIRE].
[10] A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys.51 (1990) 172 [Yad. Fiz.51 (1990) 273] [INSPIRE].
[11] J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase transitions, Phys. Rev.D 42 (1990) 2491 [INSPIRE].
[12] Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev.D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].
[13] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev.D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
[14] Y. Ema, K. Nakayama and Y. Tang, Production of purely gravitational dark matter, JHEP09 (2018) 135 [arXiv:1804.07471] [INSPIRE]. · Zbl 1398.85010 · doi:10.1007/JHEP09(2018)135
[15] D.J.H. Chung, E.W. Kolb and A.J. Long, Gravitational production of super-Hubble-mass particles: an analytic approach, JHEP01 (2019) 189 [arXiv:1812.00211] [INSPIRE]. · doi:10.1007/JHEP01(2019)189
[16] S. Hashiba and J. Yokoyama, Gravitational particle creation for dark matter and reheating, Phys. Rev.D 99 (2019) 043008 [arXiv:1812.10032] [INSPIRE].
[17] L. Li, T. Nakama, C.M. Sou, Y. Wang and S. Zhou, Gravitational production of superheavy dark matter and associated cosmological signatures, arXiv:1903.08842 [INSPIRE]. · Zbl 1418.83076
[18] M. Garny, M. Sandora and M.S. Sloth, Planckian interacting massive particles as dark matter, Phys. Rev. Lett.116 (2016) 101302 [arXiv:1511.03278] [INSPIRE]. · doi:10.1103/PhysRevLett.116.101302
[19] Y. Tang and Y.-L. Wu, Pure gravitational dark matter, its mass and signatures, Phys. Lett.B 758 (2016) 402 [arXiv:1604.04701] [INSPIRE]. · Zbl 1365.81137 · doi:10.1016/j.physletb.2016.05.045
[20] Y. Tang and Y.-L. Wu, On thermal gravitational contribution to particle production and dark matter, Phys. Lett.B 774 (2017) 676 [arXiv:1708.05138] [INSPIRE]. · doi:10.1016/j.physletb.2017.10.034
[21] M. Garny, A. Palessandro, M. Sandora and M.S. Sloth, Theory and phenomenology of planckian interacting massive particles as dark matter, JCAP02 (2018) 027 [arXiv:1709.09688] [INSPIRE]. · doi:10.1088/1475-7516/2018/02/027
[22] V. Silveira and A. Zee, Scalar phantoms, Phys. Lett.B 161 (1985) 136.
[23] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev.D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
[24] P.B. Greene and L. Kofman, Preheating of fermions, Phys. Lett.B 448 (1999) 6 [hep-ph/9807339] [INSPIRE].
[25] P.B. Greene and L. Kofman, On the theory of fermionic preheating, Phys. Rev.D 62 (2000) 123516 [hep-ph/0003018] [INSPIRE].
[26] M. Peloso and L. Sorbo, Preheating of massive fermions after inflation: Analytical results, JHEP05 (2000) 016 [hep-ph/0003045] [INSPIRE].
[27] T. Asaka and H. Nagao, Non-perturbative corrections to particle production from coherent oscillation, Prog. Theor. Phys.124 (2010) 293 [arXiv:1004.2125] [INSPIRE]. · Zbl 1201.81110 · doi:10.1143/PTP.124.293
[28] D.H. Lyth and D. Roberts, Cosmological consequences of particle creation during inflation, Phys. Rev.D 57 (1998) 7120 [hep-ph/9609441] [INSPIRE].
[29] V. Kuzmin and I. Tkachev, Matter creation via vacuum fluctuations in the early universe and observed ultrahigh-energy cosmic ray events, Phys. Rev.D 59 (1999) 123006 [hep-ph/9809547] [INSPIRE].
[30] D.J.H. Chung, L.L. Everett, H. Yoo and P. Zhou, Gravitational Fermion production in inflationary cosmology, Phys. Lett.B 712 (2012) 147 [arXiv:1109.2524] [INSPIRE]. · doi:10.1016/j.physletb.2012.04.066
[31] A.L. Maroto and A. Mazumdar, Production of spin 3/2 particles from vacuum fluctuations, Phys. Rev. Lett.84 (2000) 1655 [hep-ph/9904206] [INSPIRE].
[32] R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Gravitino production after inflation, Phys. Rev.D 61 (2000) 103503 [hep-th/9907124] [INSPIRE].
[33] G.F. Giudice, A. Riotto and I. Tkachev, Thermal and nonthermal production of gravitinos in the early universe, JHEP11 (1999) 036 [hep-ph/9911302] [INSPIRE].
[34] R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry, supergravity and cosmology, Class. Quant. Grav.17 (2000) 4269 [Erratum ibid.21 (2004) 5017] [hep-th/0006179] [INSPIRE]. · Zbl 1007.83041
[35] H.P. Nilles, M. Peloso and L. Sorbo, Nonthermal production of gravitinos and inflatinos, Phys. Rev. Lett.87 (2001) 051302 [hep-ph/0102264] [INSPIRE].
[36] H.P. Nilles, M. Peloso and L. Sorbo, Coupled fields in external background with application to nonthermal production of gravitinos, JHEP04 (2001) 004 [hep-th/0103202] [INSPIRE]. · doi:10.1088/1126-6708/2001/04/004
[37] Y. Ema, K. Mukaida, K. Nakayama and T. Terada, Nonthermal gravitino production after large field inflation, JHEP11 (2016) 184 [arXiv:1609.04716] [INSPIRE]. · Zbl 1390.83449 · doi:10.1007/JHEP11(2016)184
[38] O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett.B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE]. · doi:10.1016/j.physletb.2012.01.029
[39] Y. Farzan and A.R. Akbarieh, VDM: a model for Vector Dark Matter, JCAP10 (2012) 026 [arXiv:1207.4272] [INSPIRE]. · doi:10.1088/1475-7516/2012/10/026
[40] P.W. Graham, J. Mardon and S. Rajendran, Vector Dark Matter from inflationary fluctuations, Phys. Rev.D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].
[41] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Violent preheating in inflation with nonminimal coupling, JCAP02 (2017) 045 [arXiv:1609.05209] [INSPIRE]. · doi:10.1088/1475-7516/2017/02/045
[42] A. Ibarra, D. Tran and C. Weniger, Indirect searches for decaying dark matter, Int. J. Mod. Phys.A 28 (2013) 1330040 [arXiv:1307.6434] [INSPIRE]. · doi:10.1142/S0217751X13300408
[43] X. Chen and Y. Wang, Quasi-single field inflation and non-gaussianities, JCAP04 (2010) 027 [arXiv:0911.3380] [INSPIRE]. · doi:10.1088/1475-7516/2010/04/027
[44] D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
[45] V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP11 (2012) 047 [arXiv:1204.4207] [INSPIRE]. · doi:10.1088/1475-7516/2012/11/047
[46] T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP06 (2013) 051 [arXiv:1211.1624] [INSPIRE]. · Zbl 1342.83110 · doi:10.1007/JHEP06(2013)051
[47] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
[48] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012). · Zbl 1245.83001 · doi:10.1017/CBO9781139026833
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.