zbMATH — the first resource for mathematics

Weak solutions of the Robin problem for the Oseen system. (English) Zbl 1418.76026
Summary: We study the Robin problem for the Oseen system in the Sobolev space \(W^{1,q}(\Omega ;\mathbb{R}^m)\times L^q(\Omega )\) on a bounded domain \(\Omega \subset{{\mathbb{R}}}^m\) with Lipschitz boundary for \(m=2\) or \(m=3\). We prove the unique solvability of the problem for \(3/2<q<3\) and \(\partial \Omega \) Lipschitz, and for \(1<q<\infty \) and \(\partial \Omega \) of class \({{\mathcal{C}}}^1\). Then we study the problem on unbounded domains with compact Lipschitz boundary. First we study the problem for the homogeneous Oseen system with \((\mathbf{u},p)\in W^{1,q}_\text{loc}({\overline{\Omega }} ;{{\mathbb{R}}}^m)\times L^q_\text{loc}({\overline{\Omega }} )\) and the additional condition \(\mathbf{u}(\mathbf{x})\rightarrow 0\), \(p(\mathbf{x})\rightarrow 0\) as \(|\mathbf{x}|\rightarrow \infty \). Then we study the Robin problem for the non-homogeneous Oseen system in homogeneous Sobolev spaces \(D^{1,q}(\Omega ,{{\mathbb{R}}}^m)\times L^q(\Omega )\). Denote by \({\tilde{W}}^{1,q}(\Omega ;{{\mathbb{R}}}^m)\) the closure of \({{\mathcal{C}}}_c^\infty ({{\mathbb{R}}}^m;{{\mathbb{R}}}^m)\) in \(D^{1,q}(\Omega ,{{\mathbb{R}}}^m)\). If \(\Omega \subset{{\mathbb{R}}}^3\) is an unbounded domain with compact Lipschitz boundary and \(3/2<q<3\) then there exists a unique solution of the Robin problem in \({\tilde{W}}^{1,q}(\Omega ,{{\mathbb{R}}}^3)\times L^q(\Omega )\). We characterize all solutions of the problem in \(D^{1,q}(\Omega ,{{\mathbb{R}}}^3)\times L^q(\Omega )\).
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76D07 Stokes and related (Oseen, etc.) flows
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI
[1] Adams, R.A.: Sobolev spaces. Academic Press, New York (1975) · Zbl 0314.46030
[2] Adams, D.R., Hedberg, L.I.: Function spaces and potential theory. Springer, Berlin (1996) · Zbl 0834.46021
[3] Amrouche, Ch; Bouzit, H.; Razafison, U., On the two and three dimensinal Oseen Potentials, Potential Anal., 34, 163-179, (2011) · Zbl 1215.35073
[4] Amrouche, Ch; Meslameni, M.; Nečasová, Š., The stationary Oseen equations in an exterior domain: an approach in weighted Sobolev spaces, J. Diff. Equ., 256, 1955-1986, (2014) · Zbl 1285.35062
[5] Amrouche, Ch; Nguyen, HH, \(L^p\)-weighted theory for Navier-Stokes equations in exterior domains, Commun. Math. Anal., 8, 41-69, (2010) · Zbl 1179.35206
[6] Amrouche, Ch; Razafison, U., On the Oseen problem in three-dimensional exterior domains, Anal. Appl., 4, 133-162, (2006) · Zbl 1087.76023
[7] Amrouche, Ch; Rodríguez-Bellido, MA, On the very weak solution for the Oseen and Navier-Stokes equations, Discrete Cont. Dyn. Syst., 3, 159-183, (2010) · Zbl 1198.35173
[8] Amrouche, Ch; Rodríguez-Bellido, MA, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Rational Mech. Anal., 199, 597-651, (2011) · Zbl 1229.35164
[9] Bennett, C., Sharpley, R.: Interpolation of operators. Academic Press, Orlando (1988) · Zbl 0647.46057
[10] Brewster, K.; Mitrea, D.; Mitrea, I.; Mitrea, M., Extending Sobolev functions with partially vanishing traces from locally \((\epsilon,\delta )\)-domains and applications to mixed boundary problems, J. Funct. Anal., 266, 4314-4421, (2014) · Zbl 1312.46042
[11] Choe, HJ; Kim, EH, Dirichlet problem for the stationary Navier-Stokes system on Lipschitz domains, Commun. Part. Diff. Equ., 36, 1919-1944, (2011) · Zbl 1236.35102
[12] Cwikel, M., Real and complex interpolation and extrapolation of compact operators, Duke Math. J., 66, 333-343, (1992) · Zbl 0787.46062
[13] Dautray, R., Lions, J.L.: Mathematical analysis and numerical methods for sciences and technology. Physical origins and classical methods, vol. 1. Springer, Berlin (1990) · Zbl 0683.35001
[14] Deuring, P.; Kračmar, S., Artificial boundary conditions for the Oseen system in 3D exterior domains, Analysis, 20, 65-90, (2000) · Zbl 0948.35039
[15] Devore, RA; Sharpley, RC, Besov spaces on domains in \(R^d\), Trans. Math. Soc., 335, 843-864, (1993) · Zbl 0766.46015
[16] Farwig, R., The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces, Math. Z., 211, 409-447, (1992) · Zbl 0727.35106
[17] Finn, R., On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Ration. Mech. Anal., 19, 363-406, (1965) · Zbl 0149.44606
[18] Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations, steady state problems. Springer, New York (2011) · Zbl 1245.35002
[19] Heck, H.; Kim, H.; Kozono, H., Weak solutions of the stationary Navier-Stokes equations for a viscous incompressible fluid past an obstacle, Math. Ann., 356, 653-681, (2013) · Zbl 1288.35371
[20] Kim, D.; Kim, H., \(L^q\)-estimates for the stationary Oseen equations on exterior domains, J. Diff. Equ., 257, 3669-3699, (2014) · Zbl 1300.35096
[21] Kim, D.; Kim, H.; Park, S., Very weak solutions of the stationary Stokes equations on exterior domains, Adv. Differ. Equ., 20, 1119-1164, (2015) · Zbl 1328.35170
[22] Kohr, M.; Medková, D.; Wendland, WL, On the Oseen-Brinkman flow around an \((m-1)\)-dimensional solid obstacle, Monatsh. Math., 183, 269-302, (2017) · Zbl 1380.35078
[23] Kohr, M., Pop, I.: Viscous incompressible flow for low Reynolds numbers. WIT Press, Southampton (2004) · Zbl 1064.76001
[24] Kufner, A., John, O., Fučík, S.: Function spaces. Academia, Prague (1977) · Zbl 0364.46022
[25] Laursen, K.B., Neumann, M.M.: An introduction to local spectral theory. Oxford University Press, Oxford (2000) · Zbl 0957.47004
[26] Maz’ya, V.; Mitrea, M.; Shaposhnikova, T., The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unital close to VMO, Func. Anal. Appl., 43, 217-235, (2009) · Zbl 1271.47072
[27] Maz’ya, V.G., Poborchi, S.V.: Differentiable functions on bad domains. World Scientific, Singapore (1997) · Zbl 0918.46033
[28] Medková, D., Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system, Acta Appl. Math., 116, 281-304, (2011) · Zbl 1235.35221
[29] Medková, D., \(L^q\)-solution of the Robin problem for the Oseen system, Acta Appl. Math., 142, 61-79, (2016) · Zbl 1334.35247
[30] Medková, D.: The Laplace equation. Springer, Berlin (2018) · Zbl 06848897
[31] Mitrea, I., Mitrea, M.: Multi-layer potentials and boundary problems for higher-order elliptic systems in Lipschitz domains. Springer, Berlin (2013) · Zbl 1268.35001
[32] Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque, Paris (2012) · Zbl 1345.35076
[33] Nečas, J.: Les méthodes directes en théorie des équations élliptiques. Academia, Prague (1967) · Zbl 1225.35003
[34] Russo, A.; Tartaglione, A., On the Oseen and Navier-Stokes systems with a slip boundary condition, Appl. Math. Lett., 22, 674-678, (2009) · Zbl 1177.35157
[35] Russo, R.; Simader, ChG, A note on the existence of solutions to the Oseen system in Lipschitz domains, J. Math. Fluid. Mech., 8, 64-76, (2006) · Zbl 1099.76017
[36] Schechter, M.: Principles of functional analysis. American Mathematical Society, Providence (2002) · Zbl 0211.14501
[37] Tartar, L.: An introduction to Sobolev Spaces and interpolation spaces. Springer, Berlin (2007) · Zbl 1126.46001
[38] Triebel, H.: Theory of function spaces. Birkhäuser, Basel (1983) · Zbl 0546.46028
[39] Triebel, H.: Theory of function spaces III. Birkhäuser, Basel (2006) · Zbl 1104.46001
[40] Triebel, H.: Theory of function spaces II. Springer, Basel (2010) · Zbl 1235.46003
[41] Varnhorn, W.: The Stokes equations. Akademie Verlag, Berlin (1994) · Zbl 0813.35085
[42] Verchota, G., Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal., 59, 572-611, (1984) · Zbl 0589.31005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.