zbMATH — the first resource for mathematics

Inconsistency-tolerant reasoning over linear probabilistic knowledge bases. (English) Zbl 1418.68209
Summary: We consider the problem of reasoning under uncertainty in the presence of inconsistencies. Our knowledge bases consist of linear probabilistic constraints that, in particular, generalize many probabilistic-logical knowledge representation formalisms. We first generalize classical probabilistic models to inconsistent knowledge bases by considering a notion of minimal violation of knowledge bases. Subsequently, we use these generalized models to extend two classical probabilistic reasoning problems (the probabilistic entailment problem and the model selection problem) to inconsistent knowledge bases. We show that our approach satisfies several desirable properties and discuss some of its computational properties.

68T37 Reasoning under uncertainty in the context of artificial intelligence
03B48 Probability and inductive logic
68T30 Knowledge representation
Full Text: DOI
[1] Adamcik, M., Collective reasoning under uncertainty and inconsistency, (2014), University of Manchester, Ph.D. thesis
[2] Arieli, O.; Avron, A.; Zamansky, A., What is an ideal logic for reasoning with inconsistency?, (IJCAI, (2011)), 706-711
[3] Baroni, P.; Caminada, M.; Giacomin, M., An introduction to argumentation semantics, Knowl. Eng. Rev., 26, 4, 365-410, (2011)
[4] Benferhat, S.; Dubois, D.; Prade, H., Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study part 1: the flat case, Stud. Log., 58, 1, 17-45, (1997) · Zbl 0867.68100
[5] (Béziau, J.-Y.; Carnielli, W.; Gabbay, D., Book Handbook of Paraconsistency, (2007), College Publications London)
[6] Bona, G. D.; Cozman, F. G.; Finger, M., Towards classifying propositional probabilistic logics, J. Appl. Log., 12, 3, 349-368, (2014) · Zbl 1352.03032
[7] Bona, G. D.; Finger, M., Measuring inconsistency in probabilistic logic: rationality postulates and Dutch book interpretation, Artif. Intell., 227, 140-164, (2015) · Zbl 1346.68183
[8] Bona, G. D.; Finger, M.; Ribeiro, M. M.; Santos, Y. D.; Wassermann, R., Consolidating probabilistic knowledge bases via belief contraction, (Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning, KR’16, (2016)), 125-134
[9] Boyd, S. P.; Vandenberghe, L., Convex optimization, (2004), Cambridge University Press · Zbl 1058.90049
[10] Charnes, A.; Cooper, W. W., Programming with linear fractional functionals, Nav. Res. Logist. Q., 9, 3-4, 181-186, (1962) · Zbl 0127.36901
[11] Cholvy, L.; Hunter, A., Information fusion in logic: a brief overview, (Qualitative and Quantitative Practical Reasoning, ECSQARU’97/FAPR’97, Lecture Notes in Computer Science, vol. 1244, (1997), Springer), 86-95
[12] Cozman, F. G.; di Ianni, L. F., Probabilistic satisfiability and coherence checking through integer programming, (European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, (2013), Springer), 145-156 · Zbl 1390.68591
[13] Daniel, L., Paraconsistent probabilistic reasoning, (2009), L’École Nationale Supérieure des Mines de Paris, Ph.D. thesis
[14] Finger, M.; De Bona, G., Probabilistic satisfiability: logic-based algorithms and phase transition, (IJCAI, (2011)), 528-533
[15] Finthammer, M.; Kern-Isberner, G.; Ritterskamp, M., Resolving inconsistencies in probabilistic knowledge bases, (KI 2007: Advances in Artificial Intelligence, (2007)), 114-128
[16] Fisseler, J., Toward Markov logic with conditional probabilities, (Wilson, D. C.; Lane, H. C., Proceedings of the 21st International FLAIRS Conference, (2008), AAAI Press), 643-648
[17] Gabbay, D. M.; Hogger, C. J.; Robinson, J. A., Handbook of logic in artificial intelligence and logic programming, volume 3: nonmonotonic reasoning and uncertain reasoning, (1994), Clarendon Press · Zbl 0804.03017
[18] Gelfond, M.; Leone, N., Logic programming and knowledge representation - the a-prolog perspective, Artif. Intell., 138, 1-2, 3-38, (June 2002)
[19] Georgakopoulos, G.; Kavvadias, D.; Papadimitriou, C. H., Probabilistic satisfiability, J. Complex., 4, 1, 1-11, (1988) · Zbl 0647.68049
[20] Grant, J.; Hunter, A., Measuring inconsistency in knowledgebases, J. Intell. Inf. Syst., 27, 159-184, (2006)
[21] Grant, J.; Hunter, A., Measuring the good and the bad in inconsistent information, (Proceedings IJCAI 2013, (2013)), 2632-2637
[22] Hailperin, T., Boole’s logic and probability, Studies in Logic and the Foundations of Mathematics, vol. 85, (1986), Elsevier
[23] Hansen, P.; Jaumard, B., Probabilistic satisfiability, (Kohlas, J.; Moral, S., Handbook of Defeasible Reasoning and Uncertainty Management Systems, Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, (2000), Springer Netherlands), 321-367 · Zbl 1015.68198
[24] Hansen, P.; Perron, S., Merging the local and global approaches to probabilistic satisfiability, Int. J. Approx. Reason., 47, 2, 125-140, (2008) · Zbl 1343.68220
[25] Hansson, S. O., A textbook of belief dynamics, (2001), Kluwer Academic Publishers Norwell, MA, USA
[26] Kazama, J.; Tsujii, J., Maximum entropy models with inequality constraints: a case study on text categorization, Mach. Learn., 60, 1-3, 159-194, (2005)
[27] Kern-Isberner, G., Conditionals in nonmonotonic reasoning and belief revision, LNCS, vol. 2087, (2001), Springer-Verlag · Zbl 0978.03014
[28] Kern-Isberner, G.; Rödder, W., Belief revision and information fusion in a probabilistic environment, (Proceedings of the 16th International FLAIRS Conference, FLAIRS’03, (2003), AAAI Press), 506-510
[29] Kern-Isberner, G.; Thimm, M., Novel semantical approaches to relational probabilistic conditionals, (KR 2010, (2010)), 382-392
[30] Kersting, K., Lifted probabilistic inference, (ECAI, (2012)), 33-38
[31] Konieczny, S.; Lang, J.; Marquis, P., Reasoning under inconsistency: the forgotten connective, (International Joint Conference on Artificial Intelligence 2005, IJCAI’05, vol. 19, (2005)), 484
[32] Konieczny, S.; Pérez, R. P., On the logic of merging, (Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning, KR’98, (1998), Morgan Kaufmann), 488-498
[33] Loh, S.; Thimm, M.; Kern-Isberner, G., On the problem of grounding a relational probabilistic conditional knowledge base, (Proceedings of the 14th International Workshop on Non-Monotonic Reasoning, NMR 2010, Toronto, Canada (May 2010), (2010))
[34] Lukasiewicz, T., Probabilistic deduction with conditional constraints over basic events, J. Artif. Intell. Res., 10, 380-391, (1999)
[35] Lukasiewicz, T., Probabilistic logic programming with conditional constraints, ACM Trans. Comput. Log., 2, 3, 289-339, (Jul. 2001)
[36] Lukasiewicz, T.; Kern-Isberner, G., Probabilistic logic programming under maximum entropy, (Proceedings ECSQARU-99, Lecture Notes in Artificial Intelligence, vol. 1638, (1999), Springer), 279-292
[37] Matousek, J.; Gärtner, B., Understanding and using linear programming, (2007), Springer, Universitext (1979) · Zbl 1133.90001
[38] Mladenov, M.; Ahmadi, B.; Kersting, K., Lifted linear programming, (AISTATS, (2012)), 788-797
[39] Nilsson, N. J., Probabilistic logic, Artif. Intell., 28, 71-88, (February 1986)
[40] Nute, D., Defeasible logic, (Gabbay, D. M.; Hogger, C. J.; Robinson, J. A., Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, (1994), Oxford University Press, Inc. New York, NY, USA), 353-395
[41] Nute, D.; Cross, C., Conditional logic, (Gabbay, D.; Guenther, F., Handbook of Philosophical Logic, vol. 4, (2002), Kluwer Academic Publishers), 1-98 · Zbl 1003.03500
[42] Paris, J. B., The uncertain Reasoner’s companion - A mathematical perspective, (1994), Cambridge University Press · Zbl 0838.68104
[43] Picado-Muiño, D., Measuring and repairing inconsistency in probabilistic knowledge bases, Int. J. Approx. Reason., (2011) · Zbl 1226.68114
[44] Poole, D., First-order probabilistic inference, (IJCAI, vol. 3, (2003), Citeseer), 985-991
[45] Potyka, N., Linear programs for measuring inconsistency in probabilistic logics, (Proceedings of the 14th International Conf. on Principles of Knowledge Representation and Reasoning, KR’14, (2014)), 568-577
[46] Potyka, N., Reasoning over linear probabilistic knowledge bases with priorities, (International Conference on Scalable Uncertainty Management, (2015), Springer), 121-136
[47] Potyka, N., Solving reasoning problems for probabilistic conditional logics with consistent and inconsistent information, (2015), Hagen, Ph.D. thesis
[48] Potyka, N., Relationships between semantics for relational probabilistic conditional logics, (Computational Models of Rationality, Essays Dedicated to Gabriele Kern-Isberner, (2016), College Publications), 332-347
[49] Potyka, N.; Acar, E.; Thimm, M.; Stuckenschmidt, H., Group decision making via probabilistic belief merging, (International Joint Conference on Artificial Intelligence 2016, IJCAI’16, (2016)), 3623-3629
[50] Potyka, N.; Beierle, C.; Kern-Isberner, G., A concept for the evolution of relational probabilistic belief states and the computation of their changes under optimum entropy semantics, J. Appl. Log., 13, 4, 414-440, (2015) · Zbl 1401.68326
[51] Potyka, N.; Thimm, M., Consolidation of probabilistic knowledge bases by inconsistency minimization, (Proceedings of the 21st European Conference on Artificial Intelligence, ECAI’14, (2014)), 729-734 · Zbl 1366.68316
[52] Potyka, N.; Thimm, M., Probabilistic reasoning with inconsistent beliefs using inconsistency measures, (Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI’15, (2015)), 3156-3163
[53] Priest, G., Minimally inconsistent lp, Stud. Log., 50, 2, 321-331, (1991) · Zbl 0748.03017
[54] Reiter, R., A logic for default reasoning, Artif. Intell., 13, 1-2, 81-132, (1980) · Zbl 0435.68069
[55] Rens, G.; Meyer, T. A.; Casini, G., On revision of partially specified convex probabilistic belief bases, (22nd European Conference on Artificial Intelligence, ECAI 2016, (2016)), 921-929 · Zbl 1403.68283
[56] Rödder, W.; Meyer, C.-H., Coherent knowledge processing at maximum entropy by spirit, (Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence, (1996), Morgan Kaufmann Publishers Inc.), 470-476
[57] Rödder, W.; Xu, L., Entropy-driven inference and inconsistency, (AISTATS, (1999))
[58] Schramm, M.; Ertel, W., Reasoning with probabilities and maximum entropy: the system pit and its application in lexmed, (Operations Research Proceedings 1999, (2000), Springer), 274-280 · Zbl 1015.90506
[59] Slota, M.; Leite, J., On semantic update operators for answer-set programs, (Coelho, H.; Studer, R.; Wooldridge, M., Proceedings of the 19th European Conference on Artificial Intelligence, ECAI’10, (2012), IOS Press), 957-962 · Zbl 1211.68426
[60] Steele, J. M., The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities, (2004), Cambridge University Press · Zbl 1060.26023
[61] Thimm, M., Measuring inconsistency in probabilistic knowledge bases, (Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, (2009))
[62] Thimm, M., Inconsistency measures for probabilistic logics, Artif. Intell., 197, 1-24, (April 2013)
[63] Van den Broeck, G.; Taghipour, N.; Meert, W.; Davis, J.; De Raedt, L., Lifted probabilistic inference by first-order knowledge compilation, (IJCAI, (2011)), 2178-2185
[64] Wilmers, G., A foundational approach to generalising the maximum entropy inference process to the multi-agent context, Entropy, 17, 2, 594-645, (2015) · Zbl 1338.62026
[65] Yeung, R. W., Information theory and network coding, (2008), Springer Science & Business Media · Zbl 1154.94001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.