×

zbMATH — the first resource for mathematics

Distribution-free specification tests of conditional models. (English) Zbl 1418.62193
Summary: This article proposes a class of asymptotically distribution-free specification tests for parametric conditional distributions. These tests are based on a martingale transform of a proper sequential empirical process of conditionally transformed data. Standard continuous functionals of this martingale provide omnibus tests while linear combinations of the orthogonal components in its spectral representation form a basis for directional tests. Finally, Neyman-type smooth tests, a compromise between directional and omnibus tests, are discussed. As a special example we study in detail the construction of directional tests for the null hypothesis of conditional normality versus heteroskedastic contiguous alternatives. A small Monte Carlo study shows that our tests attain the nominal level already for small sample sizes.

MSC:
62G10 Nonparametric hypothesis testing
62E20 Asymptotic distribution theory in statistics
62G20 Asymptotic properties of nonparametric inference
62P20 Applications of statistics to economics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Andrews, D.W.K., A conditional Kolmogorov test, Econometrica, 65, 1097-1128, (1997) · Zbl 0928.62019
[2] Bai, J., Weak convergence of sequential empirical processes of residuals in ARMA models, Annals of statistics, 22, 2051-2061, (1994) · Zbl 0826.60016
[3] Bai, J., Testing for parameter constancy in linear regressions: an empirical distribution function approach, Econometrica, 64, 597-622, (1996) · Zbl 0844.62032
[4] Bai, J., Testing parametric conditional distributions of dynamic models, The review of economics and statistics, 85, 531-549, (2003)
[5] Behnen, K.; Neuhaus, G., A central limit theorem under contiguous alternatives, Annals of statistics, 3, 1349-1353, (1975) · Zbl 0322.62021
[6] Bickel, P.; Wichura, M., Convergence criteria for multiparameter stochastic processes, Annals of mathematical statistics, 42, 1656-1670, (1971) · Zbl 0265.60011
[7] Brown, R.L.; Durbin, J.; Evans, J.M., Techniques for testing the constancy of regression relationships over time, Journal of the royal statistical society series B, 37, 149-192, (1975) · Zbl 0321.62063
[8] Brownrigg, R.D., 2005. Tables of distribution functions of suprema of Brownian Motion on a line or in 2-space. At \(\langle\)http://www.mcs.vuw.ac.nz/ray/Brownian/⟩.
[9] Cameron, A.C.; Trivedi, P.K., Regression analysis on count data, (1998), Cambridge University Press Cambridge · Zbl 0924.62004
[10] Durbin, J., Weak convergence of the sample distribution function when parameters are estimated, Annals of statistics, 1, 279-290, (1973) · Zbl 0256.62021
[11] Durbin, J.; Knott, M.; Taylor, C.C., Components of cramér – von Mises statistics II, Journal of the royal statistical society series B, 37, 216-237, (1975) · Zbl 0335.62032
[12] Eubank, R.L.; La Riccia, V.N., Asymptotic comparison of cramér – von Mises and nonparametric function techniques for testing goodness-of-fit, Annals of statistics, 20, 2071-2086, (1992) · Zbl 0769.62033
[13] Gikhman, I.I., Some remarks on A. Kolmogorov’s goodness of fit test, Dokladi akademii nauk, 91, 715-718, (1953), (in Russian)
[14] Grenander, U., Stochastic processes and statistical inference, Arkiv för matematik, 1, 195-277, (1950) · Zbl 0058.35501
[15] Härdle, W.; Mammen, E., Comparing nonparametric versus parametric regression fits, Annals of statistics, 21, 1926-1947, (1993) · Zbl 0795.62036
[16] Kac, M.; Kiefer, J.; Wolfowitz, J., On tests of normality and other goodness of fit based on distance methods, Annals of mathematical statistics, 26, 189-211, (1955) · Zbl 0066.12301
[17] Kallenberg, C.M.; Ledwina, T., Data-driven rank tests for independence, Journal of the American statistical association, 94, 285-301, (1999) · Zbl 1072.62574
[18] Khmaladze, E.V., Martingale approach to the goodness of fit tests, Theory of probabilities and applications, 26, 246-265, (1981) · Zbl 0454.60049
[19] Khmaladze, E.V., An innovation approach in goodness-of-fit tests in \(\mathbb{R}^m\), Annals of statistics, 16, 1503-1516, (1988) · Zbl 0671.62048
[20] Khmaladze, E.V., Goodness of fit problem and scanning innovation martingales, Annals of statistics, 21, 798-829, (1993) · Zbl 0801.62043
[21] Khmaladze, E.V.; Koul, H.L., Martingale transforms goodness-of-fit tests in regression models, Annals of statistics, 32, 995-1034, (2004) · Zbl 1092.62052
[22] Koul, H., Weighted empirical processes in dynamic nonlinear models, (2002), Springer New York · Zbl 1007.62047
[23] Koul, H.; Stute, W., Nonparametric model checks for time series, Annals of statistics, 27, 204-236, (1999) · Zbl 0955.62089
[24] Kuelbs, J., The invariance principle for a lattice of random variables, Annals of mathematical statistics, 39, 382-389, (1968) · Zbl 0164.46401
[25] Lancaster, T., The econometric analysis of transition data, (1990), Cambridge University Press Cambridge · Zbl 0717.62106
[26] Maddala, G.S., Limited-dependent and qualitative variables in econometrics, (1983), Cambridge University Press Cambridge · Zbl 0527.62098
[27] Neuhaus, G., On weak convergence of stochastic processes with multi-dimensional time parameter, Annals of mathematical statistics, 42, 1285-1295, (1971) · Zbl 0222.60013
[28] Neuhaus, G., Asymptotic properties of the cramér – von Mises statistic when parameters are estimated, (), 257-297
[29] Neuhaus, G., 1976. Weak convergence under contiguous alternatives of the empirical process when parameters are estimated: the \(D_k\) approach. Lecture Notes in Mathematics, vol. 566. Springer, Berlin, pp. 68-82. · Zbl 0356.62039
[30] Neyman, J., Smooth tests for goodness of fit, Skandinavan aktuarietidskrijt, 20, 149-199, (1937) · JFM 63.1092.02
[31] Nikabadze, A., 1997. Scanning innovations and goodness of fit tests for vector random variables against the general alternative. A. Razmadze Mathematical Institute, Tbilisi, Preprint.
[32] Nikabadze, A.; Stute, W., Model checks under random censorship, Statistics and probability letters, 32, 249-259, (1997) · Zbl 1003.62540
[33] Pollard, D., Convergence of stochastic processes, (1984), Springer New York, Berlin · Zbl 0544.60045
[34] Rosenblatt, M., Remarks on a multivariate transformation, Annals of mathematical statistics, 23, 470-472, (1952) · Zbl 0047.13104
[35] Schoenfeld, D.A., Asymptotic properties of tests based on linear combinations of the orthogonal components of the cramér – von Mises statistic, Annals of statistics, 5, 1017-1026, (1977) · Zbl 0369.62045
[36] Schoenfeld, D.A., Tests based on linear combinations of the orthogonal components of the cramér – von Mises statistic when parameters are estimated, Annals of statistics, 8, 1017-1022, (1980) · Zbl 0485.62039
[37] Shorack, G.R.; Wellner, J.A., Empirical processes with applications to statistics, (1986), Wiley New York · Zbl 1170.62365
[38] Straf, M.L., Weak convergence of stochastic processes with several parameters, (), 187-221
[39] Stute, W., Nonparametric model checks for regression, Annals of statistics, 25, 613-641, (1997) · Zbl 0926.62035
[40] Stute, W.; Zhu, L.X., Model checks for generalized linear models, Scandinavan journal of statistics, 29, 535-545, (2002) · Zbl 1035.62073
[41] Stute, W.; Thies, S.; Zhu, L.X., Model checks for regression: an innovation process approach, Annals of statistics, 26, 1916-1934, (1998) · Zbl 0930.62044
[42] Zheng, J.X., A conditional test of conditional parametric distributions, Econometric theory, 16, 667-691, (2000) · Zbl 0967.62032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.