×

A comparative study of pricing approaches for longevity instruments. (English) Zbl 1416.91200

Summary: The presence of systematic risk in mortality forecasts, known as longevity risk, has called for the introduction of longevity instruments and their market development. Management of longevity risk has been an ongoing issue for insurance companies and pension funds who offer products with payout depending on the lifetime of policyholders. One of the major difficulties in pricing longevity instruments is the determination of a longevity risk-premium. This problem arises from the fact that the longevity market is illiquid and is considered to be incomplete. In this paper we provide an insight to the study of several pricing approaches for longevity instruments that have been proposed in the literature. To account for parameter uncertainty in mortality forecasts and longevity instruments pricing, our analysis hinges on a Bayesian state-space mortality model. The sampling-based Bayesian approach allows us to obtain a distribution of the longevity risk-premium, thus providing an alternative perspective in analyzing the pricing methods. We also discussed the advantages and disadvantages of the considered pricing approaches.

MSC:

91B30 Risk theory, insurance (MSC2010)
91G20 Derivative securities (option pricing, hedging, etc.)
91-04 Software, source code, etc. for problems pertaining to game theory, economics, and finance
62P05 Applications of statistics to actuarial sciences and financial mathematics

Software:

StMoMo; BayesDA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alonso-García, J.; Boado-Penas, M.d. C.; Devolder, P., Adequacy, fairness and sustainability of pay-as-you-go-pension-systems: defined benefit versus defined contribution, Eur. J. Finance, 1-27, (2017)
[2] Alonso-García, J.; Devolder, P., Guarantee valuation in notional defined contribution pension systems, Astin Bull., 46, 3, 677-707, (2016) · Zbl 1390.91155
[3] Alvarez, I., Niemi, J., Simpson, M., 2014. Bayesian inference for a covariance matrix. arXiv preprint arXiv:1408.4050.
[4] Armagan, A.; Clyde, M.; Dunson, D. B., Generalized beta mixtures of gaussians, (Advances in Neural Information Processing Systems, (2011)), 523-531
[5] Artzner, P.; Delbaen, F.; Eber, J.-M.; Heath, D., Coherent measures of risk, Math. Finance, 9, 3, 203-228, (1999) · Zbl 0980.91042
[6] Bauer, D.; Börger, M.; Ruß, J., On the pricing of longevity-linked securities, Insurance Math. Econom., 46, 1, 139-149, (2010) · Zbl 1231.91142
[7] Bauer, D.; Borger, M.; Russ, J., On the pricing of longevity-linked securities, Insurance Math. Econom., 46, 139-149, (2010) · Zbl 1231.91142
[8] Bayraktar, E.; Milevsky, M.; Promislow, S.; Young, V., Valuation of mortality risk via the instantaneous sharpe ratio: applications to life annuities, J. Econom. Dynam. Control, 33, 676-691, (2009) · Zbl 1170.91406
[9] Bayraktar, E.; Young, V., Pricing options in incomplete equity markets via the instantaneous sharpe ratio, Ann. Finance, 4, 399-429, (2008) · Zbl 1233.91256
[10] Biffis, E.; Blake, D.; Pitotti, L.; Sun, A., The cost of counterparty risk and collateralization in longevity swaps, J. Risk Insurance, 83(2), 387-419, (2016)
[11] Bjork, T., Arbitrage theory in continuous time, (2009), Oxford University Press
[12] Black, F.; Scholes, M., The pricing of options and corporate liabilities, J. Polit. Econ., 81, 3, 637-654, (1973) · Zbl 1092.91524
[13] Blackburn, C.; Hanewald, K.; Olivieri, A.; Sherris, M., Longevity risk management and shareholder value for a life annuity business, Astin Bull., 47(1), 43-77, (2017) · Zbl 1390.91161
[14] Blackburn, C.; Sherris, M., Consistent dynamic affine mortality models for longevity risk applications, Insurance Math. Econom., 53, 64-73, (2013) · Zbl 1284.91208
[15] Blake, D.; Cairns, A. J.G.; Dowd, K., Living with mortality: longevity bonds and other mortality-linked securities, Br. Actuar. J., 228, (2006)
[16] Bowles, S.; Gintis, H., Walrasian economics in retrospect, Q. J. Econ., 115, 4, 1411-1439, (2000)
[17] Boyer, M. M.; Stentoft, L., If we can simulate it, we can insure it: an application to longevity risk management, Insurance Math. Econom., 52, 1, 35-45, (2013) · Zbl 1291.91228
[18] Cairns, A.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insurance, 73(4), 687-718, (2006)
[19] Cairns, A.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insurance, 73, 4, 687-718, (2006)
[20] Cairns, A.; Blake, D.; Dowd, K., Modelling and management of mortality risk: A review, Scand. Actuar. J., 2(3), 79-113, (2008) · Zbl 1224.91048
[21] Cairns, A.; Blake, D.; Dowd, K.; Coughlan, G.; Epstein, D.; Ong, A.; Balevich, I., A quantitative comparison of stochastic mortality models using data from england and wales and the united states, N. Am. Actuar. J., 13(1), 1-35, (2009)
[22] Cairns, A. J.; Blake, D.; Dowd, K.; Coughlan, G. D.; Khalaf-Allah, M., Bayesian stochastic mortality modelling for two populations, Astin Bull., 41, 1, 29-59, (2011)
[23] Cappé, O.; Moulines, E.; Rydén, T., Inference in hidden Markov models, (2005), Springer New York · Zbl 1080.62065
[24] Carter, C. K.; Kohn, R., On Gibbs sampling for state space models, Biometrika, 81, 3, 541-553, (1994) · Zbl 0809.62087
[25] Casella, G.; George, E. I., Explaining the Gibbs sampler, Amer. Statist., 46, 3, 167-174, (1992)
[26] Chan, W. S.; Li, J. S.H.; Zhou, K. Q.; Zhou, R., Towards a large and liquid longevity market: A graphical population basis risk metric, Geneva Pap. Risk Insur., 41(1), 118-127, (2016)
[27] Cochrane, J. H.; Saa-Requejo, J., Beyond arbitrage: good-deal asset price bounds in incomplete markets, J. Polit. Econ., 108, 1, 79-119, (2000)
[28] Coughlan, G., 2014. Market products for longevity risk hedging. www.cass.city.ac.uk/longevity-10/programme.
[29] Cox, S. H.; Lin, Y.; Pedersen, H., Mortality risk modeling: applications to insurance securitization, Insurance Math. Econom., 46, 1, 242-253, (2010) · Zbl 1231.91168
[30] Cvitanić, J.; Pham, H.; Touzi, N., Super-replication in stochastic volatility models under portfolio constraints, J. Appl. Probab., 36, 2, 523-545, (1999) · Zbl 0956.91043
[31] Czado, C.; Delwarde, A.; Denuit, M., Bayesian Poisson log-bilinear mortality projections, Insurance Math. Econom., 36, 260-284, (2005) · Zbl 1110.62142
[32] Dahl, M.; Møller, T., Valuation and hedging of life insurance liabilities with systematic mortality risk, Insurance Math. Econom., 39, 2, 193-217, (2006) · Zbl 1201.91089
[33] De Rosa, C.; Luciano, E.; Regis, L., Basis risk in static versus dynamic longevity-risk hedging, Scand. Actuar. J., 4, 343-365, (2016) · Zbl 1401.91129
[34] Deng, Y.; Brockett, P. L.; MacMinn, R. D., Longevity/mortality risk modeling and securities pricing, J. Risk Insurance, 79, 3, 697-721, (2012)
[35] Denuit, M.; Devolder, P.; Goderniaux, A.-C., Securitization of longevity risk: pricing survivor bonds with Wang transform in the Lee-Carter framework, J. Risk Insurance, 74, 1, 87-113, (2007)
[36] Doob, J. L.; Doob, J. L., Stochastic processes, (1953), Wiley New York · Zbl 0053.26802
[37] Dowd, K.; Cairns, A.; Blake, D.; Coughlan, G.; Epstein, D.; Khalaf-Allah, M., Evaluating the goodness of fit of stochastic mortality models, Insurance Math. Econom., 47, 255-265, (2010) · Zbl 1231.91179
[38] Dowd, K.; Cairns, A. J.; Blake, D.; Coughlan, G. D.; Epstein, D.; Khalaf-Allah, M., Backtesting stochastic mortality models: an ex post evaluation of multiperiod-ahead density forecasts, N. Am. Actuar. J., 14, 3, 281-298, (2010)
[39] Eichler, A.; Leobacher, G.; Szölgyenyi, M., Utility indifference pricing of insurance catastrophe derivatives, Eur. Actuar. J., 7, 2, 515-534, (2017) · Zbl 1405.91256
[40] Foster, F. D.; Whiteman, C. H., Bayesian prediction, entropy, and option pricingx, Aust. J. Manag., 31, 2, 181-205, (2006)
[41] Fung, M. C.; Ignatieva, K.; Sherris, M., Systematic mortality risk: an analysis of guaranteed lifetime withdrawal benefits in variable annuities, Insurance Math. Econom., 58, 103-115, (2014) · Zbl 1304.91103
[42] Fung, M.C., Ignatieva, K., Sherris, M., 2015. Managing systematic mortality risk in life annuities: An application of longevity derivatives. UNSW Business School Research Paper, 20015ACTL04. · Zbl 1304.91103
[43] Fung, M. C.; Peters, G. W.; Shevchenko, P. V., A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting, Ann. Actuar. Sci., 1-47, (2017)
[44] Gelman, A., Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper), Bayesian Anal., 1, 3, 515-534, (2006) · Zbl 1331.62139
[45] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B., Bayesian data analysis, vol. 2, (2014), Chapman & Hall/CRC Boca Raton FL, USA
[46] Geman, S.; Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6, 721-741, (1984) · Zbl 0573.62030
[47] Geweke, J., Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, vol. 196, (1991), Federal Reserve Bank of Minneapolis, Research Department Minneapolis MN, USA
[48] Geweke, J.; Koop, G.; van Dijk, H., The Oxford handbook of Bayesian econometrics, (2011), Oxford University Press
[49] Hodges, S.; Neuberger, A., Optimal replication of contingent claims under transaction costs, Rev. Futures Markets, (1989)
[50] Huang, A.; Wand, M. P., Simple marginally noninformative prior distributions for covariance matrices, Bayesian Anal., 8, 2, 439-452, (2013) · Zbl 1329.62135
[51] Hunt, A.; Blake, D., Modelling longevity bonds: analysing the swiss re kortis bond, Insurance Math. Econom., 63, 12-29, (2015) · Zbl 1348.91150
[52] Kamat, R.; Oren, S. S., Exotic options for interruptible electricity supply contracts, Oper. Res., 50, 5, 835-850, (2002) · Zbl 1163.91407
[53] Kapur, J. N.; Kesavan, H. K., Entropy optimization principles and their applications, (1992), Springer
[54] Kogure, A.; Kitsukawa, K.; Kurachi, Y., A Bayesian comparison of models for changing mortalities toward evaluating longevity risk in Japan, Asia-Pac. J. Risk Insur., 3, 2, (2009)
[55] Kogure, A.; Kurachi, Y., A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions, Insurance Math. Econom., 46, 162-172, (2010) · Zbl 1231.91438
[56] Kogure, A.; Kurachi, Y., A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions, Insurance Math. Econom., 46, 1, 162-172, (2010) · Zbl 1231.91438
[57] Koissi, M.; Shapiro, A. F.; Hognas, Evaluating and extending Lee-Carter model for mortality forecasting: bootstrap confidence interval, Insurance Math. Econom., 38, 1-20, (2006) · Zbl 1098.62138
[58] Kullback, S.; Leibler, R. A., On information and sufficiency, Ann. Math. Stat., 22, 1, 79-86, (1951) · Zbl 0042.38403
[59] Li, J. S.-H., Pricing longevity risk with the parametric bootstrap: A maximum entropy approach, Insurance Math. Econom., 47, 2, 176-186, (2010) · Zbl 1231.91441
[60] Li, J. S.H.; Hardy, M., Measuring basis risk in longevity hedges, N. Am. Actuar. J., 15, 2, 177-200, (2011) · Zbl 1228.91042
[61] Li, S.-H.; Ng, C.-Y., Canonical valuation of mortality-linked securities, J. Risk Insurance, 78, 4, 853-884, (2011)
[62] Lin, Y.; Cox, S. H., Securitization of catastrophe mortality risks, Insurance Math. Econom., 42, 2, 628-637, (2008) · Zbl 1152.91593
[63] Liu, Y.; Li, J. S.-H., It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk, Insurance Math. Econom., 70, 301-319, (2016) · Zbl 1371.91103
[64] Liu, Y.; Li, J. S.-H., The locally linear Cairns-blake-dowd model: A note on delta-nuga hedging of longevity risk, Astin Bull., 1-73, (2016)
[65] Maccheroni, C., Nocito, S., 2017. Backtesting the Lee-Carter and the Cairns-Blake-Dowd stochastic mortality models on italian death rates.
[66] Mathiesen, L., Computation of economic equilibria by a sequence of linear complementarity problems, (Economic Equilibrium: Model Formulation and Solution, (1985), Springer), 144-162 · Zbl 0579.90093
[67] Millossovich, P.; Villegas, A. M.; Kaishev, V. K., Stmomo: an R package for stochastic mortality modelling, J. Stat. Softw., (2017)
[68] Møller, T., Indifference pricing of insurance contracts in a product space model: applications, Insurance Math. Econom., 32, 2, 295-315, (2003) · Zbl 1024.62044
[69] Ngai, A.; Sherris, M., Longevity risk management for life and variable annuities: the effectiveness of static hedging using longevity bonds and derivatives, Insurance Math. Econom., 49, 100-114, (2011)
[70] Olivieri, A.; Pitacco, E., Assessing the cost of capital for longevity risk, Insur. Math. Econ., 42(3), 1013-1021, (2008) · Zbl 1141.91540
[71] Pedroza, C., A Bayesian forecasting model: predicting U.S. male mortality, Biostatistics, 7(4), 530-550, (2006) · Zbl 1170.62397
[72] Pelsser, A., On the applicability of the Wang transform for pricing financial risks, Astin Bull., 38, 171-181, (2008) · Zbl 1169.91343
[73] Petris, G.; Petrone, S.; Campagnoli, P., Dynamic linear models, (Dynamic Linear Models with R, (2009), Springer), 31-84
[74] Pollard, J. H., Mathematical models for the growth of human populations, (1973), Cambridge University Press · Zbl 0295.92013
[75] Stutzer, M., A simple nonparametric approach to derivative security valuation, J. Finance, 51, 5, 1633-1652, (1996)
[76] Walras, L.; Jaffé, W., Elements of pure economics or the theory of social wealth, (1954), George Allen & Unwin Limited, A Transl. of the Éd. Définitive, 1926, of the Eléments D’économie Politique Pure, Annotated and Collated with the Previous Editions
[77] Wang, S. S., A class of distortion operators for pricing financial and insurance risks, J. Risk Insur., 15-36, (2000)
[78] Wang, S., A universal framework for pricing financial and insurance risks, Astin Bull., 32, 213-234, (2002) · Zbl 1090.91555
[79] Wang, S. S., A universal framework for pricing financial and insurance risks, Astin Bull., 32, 02, 213-234, (2002) · Zbl 1090.91555
[80] Zhou, R.; Li, J. S.-H., A cautionary note on pricing longevity index swaps, Scand. Actuar. J., 2013, 1, 1-23, (2013), URL http://dx.doi.org/10.1080/03461238.2010.507582 · Zbl 1286.91142
[81] Zhou, R.; Li, J. S.-H.; Tan, K. S., Economic pricing of mortality-linked securities: A tatonnement approach, J. Risk Insur., 82, 1, 65-96, (2015)
[82] Zou, X.; Ye, Z.; Zhang, Q., Securitization of longevity risk-survivor swap perspective, China Finance Rev. Int., 6, 4, 322-341, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.