×

zbMATH — the first resource for mathematics

Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method. (English) Zbl 1416.80006
Summary: In this paper, an advanced boundary element method (BEM) is developed for solving three-dimensional (3D) anisotropic heat conduction problems in thin-walled structures. The troublesome nearly singular integrals, which are crucial in the applications of the BEM to thin structures, are calculated efficiently by using a nonlinear coordinate transformation method. For the test problems studied, promising BEM results with only a small number of boundary elements have been obtained when the thickness of the structure is in the orders of micro-scales \((10^{-6})\), which is sufficient for modeling most thin-walled structures as used in, for example, smart materials and thin layered coating systems. The advantages, disadvantages as well as potential applications of the proposed method, as compared with the finite element method (FEM), are also discussed.

MSC:
80M15 Boundary element methods applied to problems in thermodynamics and heat transfer
65N38 Boundary element methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Luo, J. F.; Liu, Y. J.; Berger, E. J., Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method, Comput. Mech., 22, 404-412, (1998) · Zbl 0938.74075
[2] Lamichhane, B. P.; Roberts, S. G.; Stals, L., A mixed finite element discretisation of thin plate splines based on biorthogonal systems, J. Sci. Comput., 67, 20-42, (2016) · Zbl 1348.65049
[3] Marin, L., A meshless method for solving the Cauchy problem in three-dimensional elastostatics, Comput. Math. Appl., 50, 73-92, (2005) · Zbl 1127.74014
[4] Cheng, A. H.D.; Cheng, D. T., Heritage and early history of the boundary element method, Eng. Anal. Bound. Elem., 29, 268-302, (2005) · Zbl 1182.65005
[5] Knight, M. G.; Wrobel, L. C.; Henshall, J. L., Micromechanical response of fibre-reinforced materials using the boundary element technique, Compos. Struct., 62, 341-352, (2003)
[6] Gu, Y.; Chen, W.; Zhang, C., Stress analysis for thin multilayered coating systems using a sinh transformed boundary element method, Internat. J. Solids Struct., 50, 3460-3471, (2013)
[7] Caflisch, R. E.; Growth, Structure and pattern formation for thin films, J. Sci. Comput., 37, 3-17, (2008) · Zbl 1203.74099
[8] Szabó, B. A.; Sahrmann, G. J., Hierarchic plate and shell models based on \(p\)-extension, Int. J. Numer. Meth. Eng., 26, 1855-1881, (1988) · Zbl 0661.73048
[9] Zboinski, G., Adaptive \(h p q\) finite element methods for the analysis of 3D-based models of complex structures. part 1. hierarchical modeling and approximations, Comput. Methods Appl. Mech. Engrg., 199, 2913-2940, (2010) · Zbl 1231.74449
[10] Guiggiani, M., Computing principal-value integrals in 3-D BEM for time-harmonic elastodynamics—A direct approach, Commun. Appl. Numer. Methods, 8, 141-149, (1992) · Zbl 0739.73038
[11] Gu, Y.; Chen, W.; Zhang, C. Z., Singular boundary method for solving plane strain elastostatic problems, Internat. J. Solids Struct., 48, 2549-2556, (2011)
[12] Chen, J. T.; Chang, Y. L.; Kao, S. K.; Jian, J., Revisit of the indirect boundary element method: necessary and sufficient formulation, J. Sci. Comput., 65, 467-485, (2015) · Zbl 1329.65282
[13] Demkowicz, L., Asymptotic convergence in finite and boundary element methods: part 1: theoretical results, Comput. Math. Appl., 27, 69-84, (1994) · Zbl 0807.65058
[14] Demkowicz, L., Asymptotic convergence in finite and boundary element methods: part 2: the LBB constant for rigid and elastic scattering problems, Comput. Math. Appl., 28, 93-109, (1994) · Zbl 0818.73071
[15] Sladek, V.; Sladek, J.; Tanaka, M., Nonsingular BEM formulations for thin-walled structures and elastostatic crack problems, Acta Mech., 99, 173-190, (1993) · Zbl 0774.73077
[16] Liu, Y. J., Analysis of shell-like structures by the boundary element method based on 3-D elasticity: formulation and verification, Int. J. Numer. Meth. Eng., 41, 541-558, (1998) · Zbl 0910.73068
[17] Nagarajan, A.; Mukherjee, S., A mapping method for numerical evaluation of two-dimensional integrals with 1/r singularity, Comput. Mech., 12, 19-26, (1993) · Zbl 0776.73073
[18] Guiggiani, M., The evaluation of Cauchy principal value integrals in the boundary element method—a review, Math. Comput. Modelling, 15, 175-184, (1991) · Zbl 0724.65019
[19] Lachat, J. C.; Watson, J. O., Effective numerical treatment of boundary integral equations: A formulation for three-dimensional elastostatics, Int. J. Numer. Meth. Eng., 10, 991-1005, (1976) · Zbl 0332.73022
[20] Gao, X. W.; Yang, K.; Wang, J., An adaptive element subdivision technique for evaluation of various 2D singular boundary integrals, Eng. Anal. Bound. Elem., 32, 692-696, (2008) · Zbl 1244.65199
[21] Gao, X. W., Numerical evaluation of two-dimensional singular boundary integrals—theory and Fortran code, J. Comput. Appl. Math., 188, 44-64, (2006) · Zbl 1086.65019
[22] Padhi, G. S.; Shenoi, R. A.; Moy, S. S.J.; McCarthy, M. A., Analytic integration of kernel shape function product integrals in the boundary element method, Comput. Struct., 79, 1325-1333, (2001)
[23] Zhou, H. L.; Niu, Z. R.; Cheng, C. Z.; Guan, Z. W., Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems, Comput. Struct., 86, 1656-1671, (2008)
[24] Niu, Z. R.; Cheng, C. Z.; Zhou, H. L.; Hu, Z. J., Analytic formulations for calculating nearly singular integrals in two-dimensional BEM, Eng. Anal. Bound. Elem., 31, 949-964, (2007) · Zbl 1259.74056
[25] Telles, J. C.F., A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals, Int. J. Numer. Meth. Eng., 24, 959-973, (1987) · Zbl 0622.65014
[26] Huang, Q.; Cruse, T. A., Some notes on singular integral techniques in boundary element analysis, Int. J. Numer. Meth. Eng., 36, 2643-2659, (1993) · Zbl 0781.73076
[27] Johnston, P. R.; Elliott, D., A sinh transformation for evaluating nearly singular boundary element integrals, Int. J. Numer. Meth. Eng., 62, 564-578, (2005) · Zbl 1119.65318
[28] Johnston, P. R.; Johnston, B. M.; Elliott, D., Using the iterated sinh transformation to evaluate two dimensional nearly singular boundary element integrals, Eng. Anal. Bound. Elem., 37, 708-718, (2013) · Zbl 1297.65179
[29] Sladek, V.; Sladek, J.; Tanaka, M., Optimal transformations of the integration variables in computation of singular integrals in BEM, Int. J. Numer. Meth. Eng., 47, 1263-1283, (2000) · Zbl 0962.74073
[30] Zhang, Y. M.; Gu, Y.; Chen, J. T., Boundary element analysis of the thermal behaviour in thin-coated cutting tools, Eng. Anal. Bound. Elem., 34, 775-784, (2010) · Zbl 1244.74203
[31] Xie, G.; Zhang, J.; Qin, X.; Li, G., New variable transformations for evaluating nearly singular integrals in 2D boundary element method, Eng. Anal. Bound. Elem., 35, 811-817, (2011) · Zbl 1259.65185
[32] Gu, Y.; Hua, Q.; Chen, W.; Zhang, C., Numerical evaluation of nearly hyper-singular integrals in the boundary element analysis, Comput. Struct., 167, 15-23, (2016)
[33] Ma, H.; Kamiya, N., A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and three-dimensional elasticity, Comput. Mech., 29, 277-288, (2002) · Zbl 1128.74343
[34] Gu, Y.; Chen, W.; Zhang, B.; Qu, W., Two general algorithms for nearly singular integrals in two dimensional anisotropic boundary element method, Comput. Mech., 53, 1223-1234, (2014) · Zbl 1398.74047
[35] Johnston, B. M.; Johnston, P. R.; Elliott, D., A new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method, J. Comput. Appl. Math., 245, 148-161, (2013) · Zbl 1262.65043
[36] Johnston, P. R., Application of sigmoidal transformations to weakly singular and near-singular boundary element integrals, Int. J. Numer. Meth. Eng., 45, 1333-1348, (1999) · Zbl 0935.65130
[37] Gu, Y.; Chen, W.; Zhang, C., The sinh transformation for evaluating nearly singular boundary element integrals over high-order geometry elements, Eng. Anal. Bound. Elem., 37, 301-308, (2013) · Zbl 1352.65586
[38] Lv, J.; Miao, Y.; Zhu, H., The distance sinh transformation for the numerical evaluation of nearly singular integrals over curved surface elements, Comput. Mech., 53, 359-367, (2014) · Zbl 1398.74441
[39] Gu, Y.; Gao, H.; Chen, W.; Zhang, C., A general algorithm for evaluating nearly singular integrals in anisotropic three-dimensional boundary element analysis, Comput. Methods Appl. Mech. Engrg., 308, 483-498, (2016)
[40] Gu, Y.; Chen, W.; He, X. Q., Singular boundary method for steady-state heat conduction in three dimensional general anisotropic media, Int. J. Heat. Mass. Transfer, 55, 4837-4848, (2012)
[41] Zhang, Y. M.; Liu, Z. Y.; Chen, J. T.; Gu, Y., A novel boundary element approach for solving the anisotropic potential problems, Eng. Anal. Bound. Elem., 35, 1181-1189, (2011) · Zbl 1259.80024
[42] Banerjee, P. K., The Boundary Element Methods in Engineering, (1994), McGRAW-HILL Book Company Europe
[43] Guiggiani, M.; Casalini, P., Direct computation of Cauchy principal value integrals in advanced boundary elements, Int. J. Numer. Meth. Eng., 24, 1711-1720, (1987) · Zbl 0635.65020
[44] Sladek, V.; Sladek, J., Singular integrals and boundary elements, Comput. Methods Appl. Mech. Engrg., 157, 251-266, (1998) · Zbl 0961.74072
[45] Guiggiani, M.; Gigante, A., A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method, J. Appl. Mech., 57, 906-915, (1990) · Zbl 0735.73084
[46] Johnston, B. M.; Johnston, P. R.; Elliott, D., A sinh transformation for evaluating two-dimensional nearly singular boundary element integrals, Int. J. Numer. Meth. Eng, 69, 1460-1479, (2007) · Zbl 1194.65143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.