×

Minimum distance method for directional data and outlier detection. (English) Zbl 1416.62175

Summary: In this paper, we propose estimators based on the minimum distance for the unknown parameters of a parametric density on the unit sphere. We show that these estimators are consistent and asymptotically normally distributed. Also, we apply our proposal to develop a method that allows us to detect potential atypical values. The behavior under small samples of the proposed estimators is studied using Monte Carlo simulations. Two applications of our procedure are illustrated with real data sets.

MSC:

62F35 Robustness and adaptive procedures (parametric inference)
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Agostinelli C (2006) R package ‘WLE’: Weighted Likelihood Estimation. https://cran.r-project.org/web/packages/wle/
[2] Agostinelli, C., Robust estimation for circular data, Comput Stat Data Anal, 51, 5867-5875, (2007) · Zbl 1445.62054
[3] Agostinelli C, Lund U (2013) R package ‘circular’: circular statistics. https://r-forge.r-project.org/projects/circular/
[4] Bai, Z.; Rao, C.; Zhao, L., Kernel estimators of density function of directional data, J Multivar Anal, 27, 24-39, (1988) · Zbl 0669.62015
[5] Basu, A.; Lindsay, B., Minimum disparity estimation for continuous models: efficiency, distributions and robustness, Ann Inst Stat Math, 46, 683-705, (1994) · Zbl 0821.62018
[6] Beran, R., Exponential models for directional data, Ann Stat, 7, 1162-1178, (1979) · Zbl 0426.62030
[7] Cao, R.; Cuevas, A.; Fraiman, R., Minimum distance density-based estimators, Comput Stat Data Anal, 20, 611-631, (1995) · Zbl 0875.62157
[8] Collett, D., Outliers in circular data, Appl Stat, 29, 50-57, (1980) · Zbl 0431.62020
[9] Cox D (1974) Theoretical statistics. Chapman & Hall, London · Zbl 0334.62003
[10] Davies, L.; Gather, U., The identification of multiple outliers, J Am Stat Assoc, 88, 782-792, (1993) · Zbl 0797.62025
[11] Delecroix, M.; Hristache, M.; Patilea, V., On semiparametric \(M\)-estimation in single index regression, J Stat Plan Inference, 136, 730-769, (2006) · Zbl 1077.62027
[12] Embleton, B.; Giddings, J., Late Precambrian and lower palaeozoic palaeomagnetic results from south Australia and western Australia, Earth Planet Sci Lett, 22, 355-365, (1974)
[13] Ferguson, D., Sun compass orientation of the northern cricket frog acris crepitans, Anim Behav, 14, 45-53, (1967)
[14] Fisher N, Lewis T, Embleton B (1993) Statistical analysis of spherical data. University Press, Cambridge · Zbl 0782.62059
[15] García-Portugués, E., Exact risk improvement of bandwidth selectors for kernel density estimation with directional data, Electron J Stat, 7, 1655-1685, (2013) · Zbl 1327.62241
[16] Hall, P.; Watson, G.; Cabrera, J., Kernel density estimation with spherical data, Biometrika, 74, 751-762, (1987) · Zbl 0632.62033
[17] Hampel, F., A general qualitative definition of robustness, Ann Math Stat, 42, 1887-1896, (1971) · Zbl 0229.62041
[18] He X (1992) Robust statistics of directional data: a survey. In: Nonparametric statistics and related topics. North Holland, New York, pp 87-95
[19] Hering, A.; Genton, M., Powering up with space-time wind forecasting, J Am Stat Assoc, 105, 92-104, (2010) · Zbl 1397.62484
[20] Hornik, K.; Grün, B., Movmf: an R package for Fitting mixtures of von Mises-Fisher distributions, J Stat Softw, 58, 1-31, (2014)
[21] Jammalamadaka S, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore · Zbl 1006.62050
[22] Ko, D., Robust estimation of the concentration parameter of the von Mises-Fisher distribution, Ann Stat, 20, 917-928, (1992) · Zbl 0746.62033
[23] Ko, D.; Chang, T., Robust M -estimators on spheres, J Multivar Anal, 45, 104-136, (1993) · Zbl 0777.62056
[24] Ko, D.; Guttorp, P., Robustness of estimators for directional data, Ann Stat, 16, 609-618, (1988) · Zbl 0645.62045
[25] Leong, P.; Carlile, S., Methods for spherical data analysis and visualization, J Neurosci Methods, 80, 191-200, (1998)
[26] Mardia K, Jupp P (2000) Directional data. Wiley, New York · Zbl 0935.62065
[27] Parr W, Schucany W (1982) Minimum distance estimation and components of Goodness-of-Fit Statistics. J R Stat Soc B 4(2):178-189 · Zbl 0501.62025
[28] Taylor, C., Automatic bandwidth selection for circular density estimation, Comput Stat Data Anal, 52, 3493-3500, (2008) · Zbl 1452.62269
[29] Zhao, L.; Wu, C., Central limit theorem for integrated square error of kernel estimators of spherical density, Sci China Ser A, 44, 474-483, (2001) · Zbl 0995.62051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.