×

zbMATH — the first resource for mathematics

Effect of phase response curve skewness on synchronization of electrically coupled neuronal oscillators. (English) Zbl 1415.92031
Summary: We investigate why electrically coupled neuronal oscillators synchronize or fail to synchronize using the theory of weakly coupled oscillators. Stability of synchrony and antisynchrony is predicted analytically and verified using numerical bifurcation diagrams. The shape of the phase response curve (PRC), the shape of the voltage time course, and the frequency of spiking are freely varied to map out regions of parameter spaces that hold stable solutions. We find that type 1 and type 2 PRCs can hold both synchronous and antisynchronous solutions, but the shape of the PRC and the voltage determine the extent of their stability. This is achieved by introducing a five-piecewise linear model to the PRC and a three-piecewise linear model to the voltage time course, and then analyzing the resultant eigenvalue equations that determine the stability of the phase-locked solutions. A single time parameter defines the skewness of the PRC, and another single time parameter defines the spike width and frequency. Our approach gives a comprehensive picture of the relation of the PRC shape, voltage time course, and stability of the resultant synchronous and antisynchronous solutions.

MSC:
92B25 Biological rhythms and synchronization
92C20 Neural biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramovich-Sivan, S., & Akselrod, S. (1998). A pacemaker cell pair model based on the phase response curve. Biol. Cybern., 79, 77-86. , · Zbl 0938.92008
[2] Achuthan, S., & Canavier, C. C. (2009). Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. J. Neurosci., 29, 5218-5233. ,
[3] Bem, T., Le Feuvre, Y., Rinzel, J., & Meyrand, P. (2005). Electrical coupling induces bistability of rhythms in networks of inhibitory spiking neurons. Eur. J. Neurosci., 22, 2661-2668. ,
[4] Bou-Flores, C., & Berger, A. J. (2001). Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization. J. Neurophysiol., 85, 1543-1551.
[5] Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16, 673-715. , · Zbl 1054.92006
[6] Carlen, P. L., Skinner, F., Zhang, L., Naus, C., Kushnir, M., & Perez Velazquez, J. L. (2000). The role of gap junctions in seizures. Brain Res. Rev., 32, 235-241. ,
[7] Chow, C. C., & Kopell, N. (2000). Dynamics of spiking neurons with electrical coupling. Neural Comput., 12, 1643-1678. ,
[8] Cui, J., Carmen, C. C., & Butera Robert, J. (2009). Functional phase response curves: A method for understanding synchronization of adapting neurons. J. Neurophysiol., 102, 387-398. ,
[9] Demir, S. S., Clark, J. W., & Giles, W. R. (1999). Parasympathetic modulation of sinoatrial node pacemaker activity in rabbit heart: A unifying model. Am. J. Physiol., 276, H2221-H2244.
[10] Devlin, P. F., & Kay, S. A. (2001). Circadian photoperception. Annu. Rev. Physiol., 63, 677-694. ,
[11] Erisir, A., Lau, D., Rudy, B., & Leonard, C. S. (1999). Function of specific K^+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiol., 82, 2476-2489.
[12] Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Comput., 8, 979. ,
[13] Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput., 13, 1285-1310. , · Zbl 0963.68647
[14] Ermentrout, G. B., Galán, R. F., & Urban, N. N. (2007). Relating neural dynamics to neural coding. Phys. Rev. Lett., 99, 248103. ,
[15] Ermentrout, G. B., & Kopell, N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math., 46, 233-253. , · Zbl 0594.58033
[16] Ermentrout, G. B., & Kopell, B. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol., 29, 195-217. , · Zbl 0718.92004
[17] Fuentealba, P., Crochet, S., Timofeev, I., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2004). Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo. Eur. J. Neurosci., 20, 111-119. ,
[18] Galán, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys. Rev. Lett., 94, 158101. ,
[19] Galarreta, M., & Hestrin, S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature, 402, 72-75. ,
[20] Gao, J., & Holmes, P. (2007). On the dynamics of electrically-coupled neurons with inhibitory synapses. J. Comput. Neurosci., 22, 39-61. ,
[21] Gibson, J. R., Beierlein, M., & Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402, 75-79. ,
[22] Goel, P., & Ermentrout, B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163, 191-216. , · Zbl 1008.70017
[23] Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Comput., 7, 307-337. ,
[24] Hansel, D., Mato, G., & Pfeuty, B. (2012). The role of intrinsic cell properties in synchrony of neurons interacting via electrical synapses. In N. Schultheiss, A. Prinz, & R. Butera (Eds.), Phase response curves in neuroscience: Theory, experiment, and analysis. New York: Springer. ,
[25] Hestrin, S., & Galarreta, M. (2005). Electrical synapses define networks of neocortical GABaergic neurons. Trends Neurosci., 28, 304-309. ,
[26] Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer. , · Zbl 0887.92003
[27] Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: MIT Press.
[28] Jalife, J. (1984). Mutual entrainment and electrical coupling as mechanisms for synchronous firing of rabbit sino-atrial pace-maker cells. J. Physiol., 356, 221-243. ,
[29] Kepler, T. B., Marder, E., & Abbott, L. F. (1990). The effect of electrical coupling on the frequency of model neuronal oscillators. Science, 248, 83-85. ,
[30] Klaus, A., Planert, H., Hjorth, J. J., Berke, J. D., Silberberg, G., & Kotaleski, J. H. (2011). Striatal fast-spiking interneurons: From firing patterns to postsynaptic impact. Front. Syst. Neurosci., 5, 57. ,
[31] Koos, T., & Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by GABaergic interneurons. Nat. Neurosci., 2, 467-472. ,
[32] Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer-Verlag. , · Zbl 0558.76051
[33] Landisman, C. E., Long, M. A., Beierlein, M., Deans, M. R., Paul, D. L., & Connors, B. W. (2002). Electrical synapses in the thalamic reticular nucleus. J. Neurosci., 22, 1002-1009.
[34] Lee, S. C., Cruikshank, S. J., & Connors, B. W. (2010). Electrical and chemical synapses between relay neurons in developing thalamus. J. Physiol., 588, 2403-2415. ,
[35] Lewis, T. J., & Rinzel, J. (2000). Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network, 11, 299-320. ,
[36] Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comput. Neurosci., 14, 283-309. ,
[37] Lewis, T. J., & Skinner, F. K. (2012). Understanding activity in electrically coupled networks using PRCs and the theory of weakly coupled oscillators. In N. Schultheiss, A. Prinz, & R. Butera (Eds.), Phase response curves in neuroscience: Theory, experiment, and analysis. New York: Springer. ,
[38] Mancilla, J. G., Lewis, T. J., Pinto, D. J., Rinzel, J., & Connors, B. W. (2007). Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J. Neurosci., 27, 2058-2073. ,
[39] Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50, 1645-1662. , · Zbl 0712.92006
[40] Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., & White, J. A. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. J. Neurophysiol., 93, 1197-1208. ,
[41] Neu, J. C. (1979a). Chemical waves and the diffusive coupling of limit cycle oscilltors. SIAM J. Appl. Math., 36, 509-515. , · Zbl 0418.35013
[42] Neu, J. C. (1979b). Coupled chemical oscillators. SIAM J. Appl. Math., 37, 307-315. , · Zbl 0417.34063
[43] Nomura, M., Fukai, T., & Aoyagi, T. (2003). Synchrony of fast-spiking interneurons interconnected by GABaergic and electrical synapses. Neural Comput., 15, 2179-2198. , · Zbl 1046.92016
[44] Ostojic, S., Brunel, N., & Hakim, V. (2009). Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J. Comput. Neurosci., 26, 369-392. ,
[45] Perez Velazquez, J. L., Galán, R. F., Garcia Dominguez, L., Leshchenko, Y., Lo, S., Belkas, J., & Erra, R. G. (2007). Phase response curves in the characterization of epileptiform activity. Phys. Rev. E., 76, 061912. ,
[46] Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2003). Electrical synapses and synchrony: The role of intrinsic currents. J. Neurosci., 23, 6280-6294.
[47] Preyer, A. J., & Butera, R. J. (2005). Neuronal oscillators in Aplysia californica that demonstrate weak coupling in vitro. Phys. Rev. Lett., 95, 138103. ,
[48] Smeal, R. M., Ermentrout, G. B., & White, J. A. (2010). Phase-response curves and synchronized neural networks. Phil. Trans. R. Soc. Lond. B Biol. Sci., 365, 2407-2422. ,
[49] Tateno, T., & Robinson, H. P. (2007). Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophys. J., 92, 683-695. ,
[50] Traub, R. D., Pais, I., Bibbig, A., LeBeau, F. E., Buhl, E. H., Hormuzdi, S. G., (2003). Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations. Proc. Nat. Acad. Sci. USA, 100, 1370-1374. ,
[51] Tsubo, Y., Teramae, J. N., & Fukai, T. (2007). Synchronization of excitatory neurons with strongly heterogeneous phase responses. Phys. Rev. Lett., 99, 228101. ,
[52] Valiante, T. A., Perez Velazquez, J. L., Jahromi, S. S., & Carlen, P. L. (1995). Coupling potentials in Ca1 neurons during calcium-free-induced field burst activity. J. Neurosci., 15, 6946-6956.
[53] Van Vreeswijk, C., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci., 1, 313-321. ,
[54] Verheijck, E. E., Wilders, R., Joyner, R. W., Golod, D. A., Kumar, R., Jongsma, H. J., (1998). Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells. J. Gen. Physiol., 111, 95. ,
[55] Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol., 16, 15-42. ,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.