zbMATH — the first resource for mathematics

Imprints of Schwinger effect on primordial spectra. (English) Zbl 1415.85004
Summary: We study the Schwinger effect during inflation and its imprints on the primordial power spectrum and bispectrum. The produced charged particles by Schwinger effect during inflation can leave a unique angular dependence on the primodial spectra.
85A40 Cosmology
83F05 Cosmology
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
85A15 Galactic and stellar structure
83C47 Methods of quantum field theory in general relativity and gravitational theory
Full Text: DOI arXiv
[1] Schwinger, JS, On gauge invariance and vacuum polarization, Phys. Rev., 82, 664, (1951) · Zbl 0043.42201
[2] Piazza, A.; Muller, C.; Hatsagortsyan, KZ; Keitel, CH, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys., 84, 1177, (2012)
[3] Ruffini, R.; Vereshchagin, G.; Xue, S-S, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rept., 487, 1, (2010)
[4] Tangarife, W.; Tobioka, K.; Ubaldi, L.; Volansky, T., Dynamics of relaxed inflation, JHEP, 02, 084, (2018) · Zbl 1387.83142
[5] W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Relaxed inflation, arXiv:1706.00438 [INSPIRE].
[6] T.E. Clarke, P.P. Kronberg and H. Boehringer, A new radioX-ray probe of galaxy cluster magnetic fields, Astrophys. J.547 (2001) L111 [astro-ph/0011281] [INSPIRE].
[7] F. Govoni and L. Feretti, Magnetic field in clusters of galaxies, Int. J. Mod. Phys.D 13 (2004) 1549 [astro-ph/0410182] [INSPIRE]. · Zbl 1062.85004
[8] C. Vogt and T.A. Ensslin, A Bayesian view on Faraday rotation mapsSeeing the magnetic power spectra in galaxy clusters, Astron. Astrophys.434 (2005) 67 [astro-ph/0501211] [INSPIRE].
[9] Dolag, K.; Kachelriess, M.; Ostapchenko, S.; Tomas, R., Lower limit on the strength and filling factor of extragalactic magnetic fields, Astrophys. J., 727, l4, (2011)
[10] Neronov, A.; Vovk, I., Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, Science, 328, 73, (2010)
[11] Tavecchio, F.; etal., The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200, Mon. Not. Roy. Astron. Soc., 406, l70, (2010)
[12] M.S. Turner and L.M. Widrow, Inflation produced, large scale magnetic fields, Phys. Rev.D 37 (1988) 2743 [INSPIRE].
[13] B. Ratra, Cosmologicalseedmagnetic field from inflation, Astrophys. J.391 (1992) L1 [INSPIRE].
[14] A. Dolgov, Breaking of conformal invariance and electromagnetic field generation in the universe, Phys. Rev.D 48 (1993) 2499 [hep-ph/9301280] [INSPIRE].
[15] Gasperini, M.; Giovannini, M.; Veneziano, G., Primordial magnetic fields from string cosmology, Phys. Rev. Lett., 75, 3796, (1995)
[16] M. Giovannini, Magnetogenesis and the dynamics of internal dimensions, Phys. Rev.D 62 (2000) 123505 [hep-ph/0007163] [INSPIRE].
[17] K. Bamba and J. Yokoyama, Large scale magnetic fields from inflation in dilaton electromagnetism, Phys. Rev.D 69 (2004) 043507 [astro-ph/0310824] [INSPIRE].
[18] K. Bamba and M. Sasaki, Large-scale magnetic fields in the inflationary universe, JCAP02 (2007) 030 [astro-ph/0611701] [INSPIRE].
[19] M. Giovannini and K.E. Kunze, Magnetized CMB observables: a dedicated numerical approach, Phys. Rev.D 77 (2008) 063003 [arXiv:0712.3483] [INSPIRE].
[20] Martin, J.; Yokoyama, J., Generation of large-scale magnetic fields in single-field inflation, JCAP, 01, 025, (2008)
[21] Subramanian, K., Magnetic fields in the early universe, Astron. Nachr., 331, 110, (2010) · Zbl 1217.83063
[22] A. Kandus, K.E. Kunze and C.G. Tsagas, Primordial magnetogenesis, Phys. Rept.505 (2011) 1 [arXiv:1007.3891] [INSPIRE].
[23] R. Durrer, Cosmic magnetic fields and the CMB, New Astron. Rev.51 (2007) 275 [astro-ph/0609216] [INSPIRE].
[24] K. Atmjeet, I. Pahwa, T.R. Seshadri and K. Subramanian, Cosmological magnetogenesis from extra-dimensional Gauss Bonnet gravity, Phys. Rev.D 89 (2014) 063002 [arXiv:1312.5815] [INSPIRE].
[25] Fujita, T.; Namba, R.; Tada, Y.; Takeda, N.; Tashiro, H., Consistent generation of magnetic fields in axion inflation models, JCAP, 05, 054, (2015)
[26] G. Domènech, C. Lin and M. Sasaki, Inflationary magnetogenesis with broken local U(1) symmetry, EPL115 (2016) 19001 [arXiv:1512.01108] [INSPIRE].
[27] C. Stahl, Schwinger effect impacting primordial magnetogenesis, Nucl. Phys.B 939 (2019) 95 [arXiv:1806.06692] [INSPIRE]. · Zbl 1409.83240
[28] Demozzi, V.; Mukhanov, V.; Rubinstein, H., Magnetic fields from inflation?, JCAP, 08, 025, (2009)
[29] Watanabe, M-a; Kanno, S.; Soda, J., Inflationary universe with anisotropic hair, Phys. Rev. Lett., 102, 191302, (2009)
[30] H. Kitamoto, Schwinger effect in inflaton-driven electric field, Phys. Rev.D 98 (2018) 103512 [arXiv:1807.03753] [INSPIRE].
[31] Kanno, S.; Soda, J.; Watanabe, MA, Cosmological magnetic fields from inflation and backreaction, JCAP, 12, 009, (2009)
[32] S.P. Kim and D.N. Page, Schwinger pair production in dS_{2}and AdS_{2}, Phys. Rev.D 78 (2008) 103517 [arXiv:0803.2555] [INSPIRE].
[33] Fröb, MB; etal., Schwinger effect in de Sitter space, JCAP, 04, 009, (2014)
[34] C. Stahl, E. Strobel and S.-S. Xue, Fermionic current and Schwinger effect in de Sitter spacetime, Phys. Rev.D 93 (2016) 025004 [arXiv:1507.01686] [INSPIRE].
[35] T. Kobayashi and N. Afshordi, Schwinger effect in 4D de Sitter space and constraints on magnetogenesis in the early universe, JHEP10 (2014) 166 [arXiv:1408.4141] [INSPIRE]. · Zbl 1333.83272
[36] M. Banyeres, G. Domènech and J. Garriga, Vacuum birefringence and the Schwinger effect in (3 + 1) de Sitter, JCAP10 (2018) 023 [arXiv:1809.08977] [INSPIRE].
[37] Hayashinaka, T.; Yokoyama, J., Point splitting renormalization of Schwinger induced current in de Sitter spacetime, JCAP, 07, 012, (2016)
[38] Geng, J-J; etal., Schwinger pair production by electric field coupled to inflaton, JCAP, 02, 018, (2018)
[39] T. Hayashinaka and S.-S. Xue, Physical renormalization condition for de Sitter QED, Phys. Rev.D 97 (2018) 105010 [arXiv:1802.03686] [INSPIRE].
[40] X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev.D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
[41] Chen, X.; Wang, Y., Quasi-single field inflation and non-gaussianities, JCAP, 04, 027, (2010)
[42] D. Baumann and D. Green, Signatures of supersymmetry from the Early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
[43] N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
[44] L.H. Ford, Inflation driven by a vector field, Phys. Rev.D 40 (1989) 967 [INSPIRE].
[45] Yokoyama, S.; Soda, J., Primordial statistical anisotropy generated at the end of inflation, JCAP, 08, 005, (2008)
[46] Emami, R.; Firouzjahi, H.; Sadegh Movahed, SM; Zarei, M., Anisotropic inflation from charged scalar fields, JCAP, 02, 005, (2011)
[47] J. Soda, Statistical anisotropy from anisotropic inflation, Class. Quant. Grav.29 (2012) 083001 [arXiv:1201.6434] [INSPIRE]. · Zbl 1241.83006
[48] Adshead, P.; Liu, A., Anisotropic massive gauge-flation, JCAP, 07, 052, (2018)
[49] Tahara, HWH; Nishi, S.; Kobayashi, T.; Yokoyama, J., Self-anisotropizing inflationary universe in Horndeski theory and beyond, JCAP, 07, 058, (2018)
[50] J.D. Barrow and S. Hervik, Anisotropically inflating universes, Phys. Rev.D 73 (2006) 023007 [gr-qc/0511127] [INSPIRE].
[51] J.D. Barrow and S. Hervik, On the evolution of universes in quadratic theories of gravity, Phys. Rev.D 74 (2006) 124017 [gr-qc/0610013] [INSPIRE].
[52] J.D. Barrow and S. Hervik, Simple types of anisotropic inflation, Phys. Rev.D 81 (2010) 023513 [arXiv:0911.3805] [INSPIRE].
[53] Maleknejad, A.; Sheikh-Jabbari, MM; Soda, J., Gauge fields and inflation, Phys. Rept., 528, 161, (2013) · Zbl 1297.83055
[54] R. Emami, Anisotropic inflation and cosmological observations, arXiv:1511.01683 [INSPIRE].
[55] Adshead, P.; Sfakianakis, EI, Fermion production during and after axion inflation, JCAP, 11, 021, (2015)
[56] Adshead, P.; etal., Phenomenology of fermion production during axion inflation, JCAP, 06, 020, (2018)
[57] Chen, X.; Wang, Y.; Xianyu, Z-Z, Neutrino signatures in primordial non-gaussianities, JHEP, 09, 022, (2018)
[58] Chen, X., Primordial non-gaussianities from inflation models, Adv. Astron., 2010, 638979, (2010)
[59] Wang, Y., Inflation, cosmic perturbations and non-gaussianities, Commun. Theor. Phys., 62, 109, (2014) · Zbl 1294.83001
[60] Kumar, S.; Sundrum, R., Heavy-lifting of gauge theories by cosmic inflation, JHEP, 05, 011, (2018) · Zbl 1391.85005
[61] Chen, X.; Wang, Y.; Xianyu, Z-Z, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP, 12, 006, (2017)
[62] S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity. Volume 1, Wiley, New York U.S.A. (1972).
[63] S.M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison-Wesley, San Francisco U.S.A. (2004). · Zbl 1131.83001
[64] Flauger, R.; Mirbabayi, M.; Senatore, L.; Silverstein, E., Productive interactions: heavy particles and non-Gaussianity, JCAP, 10, 058, (2017)
[65] Tong, X.; Wang, Y.; Zhou, S., Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP, 06, 013, (2018)
[66] Chen, X.; etal., Quantum standard clocks in the primordial trispectrum, JCAP, 05, 049, (2018)
[67] Noumi, T.; Yamaguchi, M.; Yokoyama, D., Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051, (2013) · Zbl 1342.83110
[68] Lee, H.; Baumann, D.; Pimentel, GL, Non-gaussianity as a particle detector, JHEP, 12, 040, (2016) · Zbl 1390.83465
[69] Chen, X.; Wang, Y.; Xianyu, Z-Z, Loop corrections to standard model fields in inflation, JHEP, 08, 051, (2016) · Zbl 1390.83439
[70] Chen, X.; Wang, Y.; Xianyu, Z-Z, Standard model background of the cosmological collider, Phys. Rev. Lett., 118, 261302, (2017)
[71] Chen, X.; Wang, Y.; Xianyu, Z-Z, Standard model mass spectrum in inflationary universe, JHEP, 04, 058, (2017) · Zbl 1378.85005
[72] Wu, Y-P; Yokoyama, J., Loop corrections to primordial fluctuations from inflationary phase transitions, JCAP, 05, 009, (2018)
[73] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev.D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
[74] Senatore, L.; Zaldarriaga, M., On loops in inflation, JHEP, 12, 008, (2010) · Zbl 1294.83099
[75] Senatore, L.; Zaldarriaga, M., On loops in inflation II: IR effects in single clock inflation, JHEP, 01, 109, (2013)
[76] Pimentel, GL; Senatore, L.; Zaldarriaga, M., On loops in inflation III: time independence of zeta in single clock inflation, JHEP, 07, 166, (2012)
[77] Dimastrogiovanni, E.; Fasiello, M.; Tasinato, G., Probing the inflationary particle content: extra spin-2 field, JCAP, 08, 016, (2018)
[78] E. Bavarsad, S.P. Kim, C. Stahl and S.-S. Xue, Effect of a magnetic field on Schwinger mechanism in de Sitter spacetime, Phys. Rev.D 97 (2018) 025017 [arXiv:1707.03975] [INSPIRE].
[79] Hayashinaka, T.; Fujita, T.; Yokoyama, J., Fermionic Schwinger effect and induced current in de Sitter space, JCAP, 07, 010, (2016)
[80] K.D. Lozanov, A. Maleknejad and E. Komatsu, Schwinger effect by an SU(2) gauge field during inflation, JHEP02 (2019) 041 [arXiv:1805.09318] [INSPIRE]. · Zbl 1411.83159
[81] A. Maleknejad and E. Komatsu, Production and backreaction of spin-2 particles of SU(2) gauge field during inflation, arXiv:1808.09076 [INSPIRE].
[82] Dimastrogiovanni, E.; Fasiello, M.; Fujita, T., Primordial gravitational waves from axion-gauge fields dynamics, JCAP, 01, 019, (2017)
[83] C. Stahl and S.-S. Xue, Schwinger effect and backreaction in de Sitter spacetime, Phys. Lett.B 760 (2016) 288 [arXiv:1603.07166] [INSPIRE].
[84] E. Bavarsad, C. Stahl and S.-S. Xue, Scalar current of created pairs by Schwinger mechanism in de Sitter spacetime, Phys. Rev.D 94 (2016) 104011 [arXiv:1602.06556] [INSPIRE].
[85] O.O. Sobol, E.V. Gorbar, M. Kamarpour and S.I. Vilchinskii, Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis, Phys. Rev.D 98 (2018) 063534 [arXiv:1807.09851] [INSPIRE].
[86] H. Firouzjahi et al., Charged vector inflation, arXiv:1812.07464 [INSPIRE].
[87] Dimopoulos, K.; Karciauskas, M.; Lyth, DH; Rodriguez, Y., Statistical anisotropy of the curvature perturbation from vector field perturbations, JCAP, 05, 013, (2009)
[88] K. Dimopoulos, M. Karciauskas and J.M. Wagstaff, Vector curvaton without instabilities, Phys. Lett.B 683 (2010) 298 [arXiv:0909.0475] [INSPIRE].
[89] Bueno Sanchez, JC; Dimopoulos, K., Inflationary buildup of a vector field condensate and its cosmological consequences, JCAP, 01, 012, (2014)
[90] A.J. Tolley and M. Wyman, The gelaton scenario: equilateral non-gaussianity from multi-field dynamics, Phys. Rev.D 81 (2010) 043502 [arXiv:0910.1853] [INSPIRE].
[91] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Mass hierarchies and non-decoupling in multi-scalar field dynamics, Phys. Rev.D 84 (2011) 043502 [arXiv:1005.3848] [INSPIRE].
[92] Achucarro, A.; etal., Effective theories of single field inflation when heavy fields matter, JHEP, 05, 066, (2012)
[93] Chen, X.; Wang, Y., Quasi-single field inflation with large mass, JCAP, 09, 021, (2012)
[94] Pi, S.; Sasaki, M., Curvature perturbation spectrum in two-field inflation with a turning trajectory, JCAP, 10, 051, (2012)
[95] Gwyn, R.; Palma, GA; Sakellariadou, M.; Sypsas, S., Effective field theory of weakly coupled inflationary models, JCAP, 04, 004, (2013)
[96] An, H.; McAneny, M.; Ridgway, AK; Wise, MB, Quasi single field inflation in the non-perturbative regime, JHEP, 06, 105, (2018)
[97] Tong, X.; Wang, Y.; Zhou, S., On the effective field theory for quasi-single field inflation, JCAP, 11, 045, (2017)
[98] Iyer, AV; etal., Strongly coupled quasi-single field inflation, JCAP, 01, 041, (2018)
[99] Gong, J-O; Pi, S.; Sasaki, M., Equilateral non-Gaussianity from heavy fields, JCAP, 11, 043, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.