×

Upstream-travelling acoustic jet modes as a closure mechanism for screech. (English) Zbl 1415.76559

Summary: Experimental evidence is provided to demonstrate that the upstream-travelling waves in two jets screeching in the A1 and A2 modes are not free-stream acoustic waves, but rather waves with support within the jet. Proper orthogonal decomposition is used to educe the coherent fluctuations associated with jet screech from a set of randomly sampled velocity fields. A streamwise Fourier transform is then used to isolate components with positive and negative phase speeds. The component with negative phase speed is shown, by comparison with a vortex-sheet model, to resemble the upstream-travelling jet wave first studied by C. K. W. Tam and F. Q. Hu [ibid. 201, 447–483 (1989; Zbl 0672.76054)]. It is further demonstrated that screech tones are only observed over the frequency range where this upstream-travelling wave is propagative.

MSC:

76Q05 Hydro- and aero-acoustics
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)

Citations:

Zbl 0672.76054
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] André, B.; Castelain, T.; Bailly, C., Broadband shock-associated noise in screeching and non-screeching underexpanded supersonic jets, AIAA J., 51, 3, 665-673, (2013)
[2] Barone, M. F.; Lele, S. K., Receptivity of the compressible mixing layer, J. Fluid Mech., 540, 301-335, (2005) · Zbl 1082.76044 · doi:10.1017/S0022112005005884
[3] Berland, J.; Bogey, C.; Bailly, C., Numerical study of screech generation in a planar supersonic jet, Phys. Fluids, 19, 7, (2007) · Zbl 1182.76056 · doi:10.1063/1.2747225
[4] Bogey, C.; Gojon, R., Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets, J. Fluid Mech., 823, 562-591, (2017) · doi:10.1017/jfm.2017.334
[5] Edgington-Mitchell, D.; Honnery, D. R.; Soria, J., The underexpanded jet Mach disk and its associated shear layer, Phys. Fluids, 26, 9, (2014) · doi:10.1063/1.4894741
[6] Edgington-Mitchell, D.; Honnery, D. R.; Soria, J., Multimodal instability in the weakly underexpanded elliptic jet, AIAA J., 53, 9, 2739-2749, (2015)
[7] Edgington-Mitchell, D.; Honnery, D. R.; Soria, J., Staging behaviour in screeching elliptical jets, Intl J. Aeroacoust., 14, 7, 1005-1024, (2015) · doi:10.1260/1475-472X.14.7.1005
[8] Edgington-Mitchell, D.; Oberleithner, K.; Honnery, D. R.; Soria, J., Coherent structure and sound production in the helical mode of a screeching axisymmetric jet, J. Fluid Mech., 748, 822-847, (2014) · doi:10.1017/jfm.2014.173
[9] Gao, J.; Li, X., A multi-mode screech frequency prediction formula for circular supersonic jets, J. Acoust. Soc. Am., 127, 3, 1251-1257, (2010) · doi:10.1121/1.3291001
[10] Jaunet, V.; Collin, E.; Delville, J., POD-Galerkin advection model for convective flow: application to a flapping rectangular supersonic jet, Exp. Fluids, 57, 5, 84, (2016) · doi:10.1007/s00348-016-2156-2
[11] Jordan, P.; Colonius, T., Wave packets and turbulent jet noise, Annu. Rev. Fluid Mech., 45, 173-195, (2013) · Zbl 1359.76257 · doi:10.1146/annurev-fluid-011212-140756
[12] Jordan, P.; Jaunet, V.; Towne, A.; Cavalieri, A. V. G.; Colonius, T.; Schmidt, O.; Agarwal, A., Jet-flap interaction tones, J. Fluid Mech., 853, 333-358, (2018) · Zbl 1415.76564 · doi:10.1017/jfm.2018.566
[13] Lessen, M.; Fox, J.; Zien, H., On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid, J. Fluid Mech., 23, 2, 355-367, (1965) · doi:10.1017/S0022112065001416
[14] Manning, T.; Lele, S., A numerical investigation of sound generation in supersonic jet screech, 21st AIAA Aeroacoustics Conference, Lahaina, HI, (2000), American Institute of Aeronautics and Astronautics
[15] Mercier, B.; Castelain, T.; Bailly, C., Experimental characterisation of the screech feedback loop in underexpanded round jets, J. Fluid Mech., 824, 202-229, (2017) · doi:10.1017/jfm.2017.336
[16] Michalke, A.
[17] Mitchell, D. M.; Honnery, D. R.; Soria, J., The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren, J. Vis., 15, 4, 333-341, (2012)
[18] Mitchell, D. M.; Honnery, D. R.; Soria, J., Near-field structure of underexpanded elliptic jets, Exp. Fluids, 54, 7, 1578, (2013) · doi:10.1007/s00348-013-1578-3
[19] Oberleithner, K.; Sieber, M.; Nayeri, C.; Paschereit, C.; Petz, C.; Hege, H.-C.; Noack, B.; Wygnanski, I., Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction, J. Fluid Mech., 679, 383-414, (2011) · Zbl 1241.76206 · doi:10.1017/jfm.2011.141
[20] Powell, A., The noise of choked jets, J. Acoust. Soc. Am., 25, 3, 385-389, (1953) · doi:10.1121/1.1907052
[21] Powell, A., On the mechanism of choked jet noise, Proc. Phys. Soc. B, 66, 12, 1039, (1953) · doi:10.1088/0370-1301/66/12/306
[22] Raman, G., Cessation of screech in underexpanded jets, J. Fluid Mech., 336, 69-90, (1997) · doi:10.1017/S002211209600451X
[23] Raman, G., Supersonic jet screech: half-century from Powell to the present, J. Sound Vib., 225, 3, 543-571, (1999) · doi:10.1006/jsvi.1999.2181
[24] Schmidt, O. T.; Towne, A.; Colonius, T.; Cavalieri, A. V.; Jordan, P.; Brès, G. A., Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability, J. Fluid Mech., 825, 1153-1181, (2017) · Zbl 1374.76074 · doi:10.1017/jfm.2017.407
[25] Shen, H.; Tam, C. K., Three-dimensional numerical simulation of the jet screech phenomenon, AIAA J., 40, 1, 33-41, (2002)
[26] Sirovich, L., Turbulence and the dynamics of coherent structures. i. Coherent structures, Q. Appl. Maths, 45, 3, 561-571, (1987) · Zbl 0676.76047 · doi:10.1090/qam/910462
[27] Soria, J., An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique, Exp. Therm. Fluid Sci., 12, 221-233, (1996) · doi:10.1016/0894-1777(95)00086-0
[28] Tam, C. K., Supersonic jet noise, Annu. Rev. Fluid Mech., 27, 1, 17-43, (1995) · doi:10.1146/annurev.fl.27.010195.000313
[29] Tam, C. K.; Ahuja, K., Theoretical model of discrete tone generation by impinging jets, J. Fluid Mech., 214, 67-87, (1990) · doi:10.1017/S0022112090000052
[30] Tam, C. K.; Hu, F. Q., On the three families of instability waves of high-speed jets, J. Fluid Mech., 201, 447-483, (1989) · Zbl 0672.76054 · doi:10.1017/S002211208900100X
[31] Tam, C. K.; Parrish, S. A.; Viswanathan, K., Harmonics of jet screech tones, AIAA J., 52, 11, 2471-2479, (2014)
[32] Tan, D.; Soria, J.; Honnery, D.; Edgington-Mitchell, D., Novel method for investigating broadband velocity fluctuations in axisymmetric screeching jets, AIAA J., 55, 7, 2321-2334, (2017)
[33] Towne, A.; Cavalieri, A. V.; Jordan, P.; Colonius, T.; Schmidt, O.; Jaunet, V.; Brès, G. A., Acoustic resonance in the potential core of subsonic jets, J. Fluid Mech., 825, 1113-1152, (2017) · Zbl 1374.76075 · doi:10.1017/jfm.2017.346
[34] Weightman, J. L.; Amili, O.; Honnery, D.; Soria, J.; Edgington-Mitchell, D., An explanation for the phase lag in supersonic jet impingement, J. Fluid Mech., 815, (2017) · Zbl 1383.76313 · doi:10.1017/jfm.2017.37
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.