×

zbMATH — the first resource for mathematics

Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. (English) Zbl 1415.76408
Summary: A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly \((-z_i/L=3.1)\) to highly convective \((-z_i/L=1082)\) conditions (where \(-z_i/L\) is the bulk stability parameter formed from the boundary-layer depth \(z_i\) and the Obukhov length \(L\)) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from \(\gamma\approx 15^\circ\) for weakly convective conditions to nearly vertical for highly convective conditions. As \(-z_i/L\) increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh-Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by R. Mathis et al. [ibid. 628, 311–337 (2009; Zbl 1181.76008)] is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76F35 Convective turbulence
76F40 Turbulent boundary layers
86A10 Meteorology and atmospheric physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adrian, R. J., Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 4, (2007) · Zbl 1146.76307
[2] Adrian, R. J.; Meinhart, C. D.; Tomkins, C. D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, (2000) · Zbl 0959.76503
[3] Agee, E. M.; Chen, T. S.; Dowell, K. E., A review of mesoscale cellular convection, Bull. Am. Meteorol. Soc., 54, 10, 1004-1012, (1973)
[4] Albertson, J. D.; Parlange, M. B., Surface length scales and shear stress: implications for land-atmosphere interaction over complex terrain, Water Resour. Res., 35, 7, 2121-2132, (1999)
[5] Anderson, W., Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations, J. Fluid Mech., 789, 567-588, (2016)
[6] Anderson, W.; Chamecki, M., Numerical study of turbulent flow over complex aeolian dune fields: the White Sands National Monument, Phys. Rev. E, 89, 1, (2014)
[7] Anderson, W.; Li, Q.; Bou-Zeid, E., Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes, J. Turbul., 16, 9, 809-831, (2015)
[8] Anderson, W.; Meneveau, C., Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces, J. Fluid Mech., 679, 288-314, (2011) · Zbl 1241.76275
[9] Atkinson, B. W.; Zhang, J., Mesoscale shallow convection in the atmosphere, Rev. Geophys., 34, 4, 403-431, (1996)
[10] Awasthi, A.; Anderson, W., Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: amplitude and frequency modulation within low-and high-momentum pathways, Phys. Rev. Fluids, 3, (2018)
[11] Baars, W. J.; Hutchins, N.; Marusic, I., Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model, Phys. Rev. Fluids, 1, (2016)
[12] Baars, W. J.; Hutchins, N.; Marusic, I., Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers, Phil. Trans. R. Soc. Lond. A, 375, 2089, (2017)
[13] Baars, W. J.; Talluru, K. M.; Hutchins, N.; Marusic, I., Wavelet analysis of wall turbulence to study large-scale modulation of small scales, Exp. Fluids, 56, 10, 188, (2015)
[14] Bailey, B. N.; Stoll, R., Turbulence in sparse, organized vegetative canopies: a large-eddy simulation study, Boundary-Layer Meteorol., 147, 3, 369-400, (2013)
[15] Balakumar, B. J.; Adrian, R. J., Large-and very-large-scale motions in channel and boundary-layer flows, Phil. Trans. R. Soc. Lond. A, 365, 1852, 665-681, (2007) · Zbl 1152.76369
[16] Baldocchi, D. D.; Hincks, B. B.; Meyers, T. P., Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods, Ecology, 69, 5, 1331-1340, (1988)
[17] Bandyopadhyay, P. R.; Hussain, A. K. M. F., The coupling between scales in shear flows, Phys. Fluids, 27, 9, 2221-2228, (1984)
[18] Banerjee, T.; Katul, G. G., Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget, Phys. Fluids, 25, 12, (2013)
[19] Banerjee, T.; Katul, G. G.; Salesky, S. T.; Chamecki, M., Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer, Q. J. R. Meteorol. Soc., 141, 690, 1699-1711, (2015)
[20] Bendat, J. S.; Piersol, A. G., Random Data Analysis and Measurement Procedures, (2010), Wiley · Zbl 1187.62204
[21] Boppe, R. S.; Neu, W. L., Quasi-coherent structures in the marine atmospheric surface layer, J. Geophys. Res., 100, C10, 20635-20648, (1995)
[22] Bou-Zeid, E.; Meneveau, C.; Parlange, M. B., A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows, Phys. Fluids, 17, 2, (2005) · Zbl 1187.76065
[23] Brown, G. L.; Thomas, A. S. W., Large structure in a turbulent boundary layer, Phys. Fluids, 20, 10, S243-S252, (1977)
[24] Brown, R. A., Longitudinal instabilities and secondary flows in the planetary boundary layer: a review, Rev. Geophys., 18, 3, 683-697, (1980)
[25] Brutsaert, W.; Stricker, H., An advection-aridity approach to estimate actual regional evapotranspiration, Water Resour. Res., 15, 2, 443-450, (1979)
[26] Businger, J. A.; Wyngaard, J. C.; Izumi, Y.; Bradley, E. F., Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, 2, 181-189, (1971)
[27] Calaf, M.; Meneveau, C.; Meyers, J., Large eddy simulation study of fully developed wind-turbine array boundary layers, Phys. Fluids, 22, 1, (2010) · Zbl 1183.76123
[28] Calaf, M.; Parlange, M. B.; Meneveau, C., Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers, Phys. Fluids, 23, 12, (2011)
[29] Cantwell, B. J., Organized motion in turbulent flow, Annu. Rev. Fluid Mech., 13, 1, 457-515, (1981)
[30] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Thomas, A. Jr., Spectral Methods in Fluid Dynamics, (2012), Springer Science and Business Media
[31] Carper, M. A.; Porté-Agel, F., The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer, J. Turbul., 5, (2004)
[32] Chamecki, M.; Dias, N. L.; Salesky, S. T.; Pan, Y., Scaling laws for the longitudinal structure function in the atmospheric surface layer, J. Atmos. Sci., 74, 4, 1127-1147, (2017)
[33] Chamecki, M.; Meneveau, C.; Parlange, M. B., Large eddy simulation of pollen transport in the atmospheric boundary layer, J. Aerosol Sci., 40, 3, 241-255, (2009)
[34] Chauhan, K.; Hutchins, N.; Monty, J.; Marusic, I., Structure inclination angles in the convective atmospheric surface layer, Boundary-Layer Meteorol., 147, 1, 41-50, (2013)
[35] Cheng, H.; Castro, I. P., Near wall flow over urban-like roughness, Boundary-Layer Meteorol., 104, 2, 229-259, (2002)
[36] Chester, S.; Meneveau, C.; Parlange, M. B., Modeling turbulent flow over fractal trees with renormalized numerical simulation, J. Comput. Phys., 225, 1, 427-448, (2007) · Zbl 1256.76042
[37] Christensen, K. T.; Adrian, R. J., Statistical evidence of hairpin vortex packets in wall turbulence, J. Fluid Mech., 431, 433-443, (2001) · Zbl 1008.76029
[38] Chung, D.; Mckeon, B. J., Large-eddy simulation of large-scale structures in long channel flow, J. Fluid Mech., 661, 341-364, (2010) · Zbl 1205.76146
[39] Cline, D. W., Snow surface energy exchanges and snowmelt at a continental, midlatitude alpine site, Water Resour. Res., 33, 4, 689-701, (1997)
[40] Coceal, O.; Dobre, A.; Thomas, T. G.; Belcher, S. E., Structure of turbulent flow over regular arrays of cubical roughness, J. Fluid Mech., 589, 375-409, (2007) · Zbl 1141.76399
[41] Conzemius, R. J.; Fedorovich, E., Dynamics of sheared convective boundary layer entrainment. Part I: methodological background and large-eddy simulations, J. Atmos. Sci., 63, 4, 1151-1178, (2006)
[42] Corino, E. R.; Brodkey, R. S., A visual investigation of the wall region in turbulent flow, J. Fluid Mech., 37, 1, 1-30, (1969)
[43] Deardorff, J. W., Numerical investigation of neutral and unstable planetary boundary layers, J. Atmos. Sci., 29, 1, 91-115, (1972)
[44] Deardorff, J. W., Parameterization of the planetary boundary layer for use in general circulation models, Mon. Weath. Rev., 100, 2, 93-106, (1972)
[45] Del Alamo, J. C.; Jiménez, J.; Zandonade, P.; Moser, R. D., Scaling of the energy spectra of turbulent channels, J. Fluid Mech., 500, 135-144, (2004) · Zbl 1059.76031
[46] Dennis, D. J. C.; Nickels, T. B., Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets, J. Fluid Mech., 673, 180-217, (2011) · Zbl 1225.76009
[47] Dennis, D. J. C.; Nickels, T. B., Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures, J. Fluid Mech., 673, 218-244, (2011) · Zbl 1225.76034
[48] Dosio, A.; Vilà-Guerau De Arellano, J.; Holtslag, A. A. M.; Builtjes, P. J. H., Dispersion of a passive tracer in buoyancy- and shear-driven boundary layers, J. Appl. Meteorol., 42, 8, 1116-1130, (2003)
[49] Fang, J.; Porté-Agel, F., Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer, Boundary-Layer Meteorol., 155, 3, 397-416, (2015)
[50] Finnigan, J. J.; Shaw, R. H.; Patton, E. G., Turbulence structure above a vegetation canopy, J. Fluid Mech., 637, 387-424, (2009) · Zbl 1183.76770
[51] Flack, K. A.; Schultz, M. P.; Shapiro, T. A., Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls, Phys. Fluids, 17, 3, (2005) · Zbl 1187.76157
[52] Frenzen, P.; Vogel, C. A., The turbulent kinetic energy budget in the atmospheric surface layer: a review and an experimental reexamination in the field, Boundary-Layer Meteorol., 60, 1, 49-76, (1992)
[53] Frenzen, P.; Vogel, C. A., Further studies of atmospheric turbulence in layers near the surface: scaling the TKE budget above the roughness sublayer, Boundary-Layer Meteorol., 99, 2, 173-206, (2001)
[54] Ganapathisubramani, B.; Hutchins, N.; Hambleton, W. T.; Longmire, E. K.; Marusic, I., Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations, J. Fluid Mech., 524, 57-80, (2005) · Zbl 1060.76503
[55] Ganapathisubramani, B.; Hutchins, N.; Monty, J. P.; Chung, D.; Marusic, I., Amplitude and frequency modulation in wall turbulence, J. Fluid Mech., 712, 61-91, (2012) · Zbl 1275.76138
[56] Ganapathisubramani, B.; Longmire, E. K.; Marusic, I., Characteristics of vortex packets in turbulent boundary layers, J. Fluid Mech., 478, 35-46, (2003) · Zbl 1032.76500
[57] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760, (1991) · Zbl 0825.76334
[58] Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, R. T.; Coops, N. C.; Parlange, M. B., Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment, Adv. Water Resour., 106, 154-168, (2017)
[59] Giometto, M. G.; Christen, A.; Meneveau, C.; Fang, J.; Krafczyk, M.; Parlange, M. B., Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface, Boundary-Layer Meteorol., 160, 3, 425-452, (2016)
[60] Guala, M.; Hommema, S. E.; Adrian, R. J., Large-scale and very-large-scale motions in turbulent pipe flow, J. Fluid Mech., 554, 521-542, (2006) · Zbl 1156.76316
[61] Guala, M. M. M.; Mckeon, B. J., Interactions within the turbulent boundary layer at high Reynolds number, J. Fluid Mech., 666, 573-604, (2011) · Zbl 1225.76015
[62] Hambleton, W. T.; Hutchins, N.; Marusic, I., Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer, J. Fluid Mech., 560, 53-64, (2006) · Zbl 1122.76305
[63] Head, M. R.; Bandyopadhyay, P., New aspects of turbulent boundary-layer structure, J. Fluid Mech., 107, 297-338, (1981)
[64] Hellström, L. H. O.; Ganapathisubramania, B.; Smits, A. J., The evolution of large-scale motions in turbulent pipe flow, J. Fluid Mech., 779, 701-715, (2015) · Zbl 1360.76102
[65] Högström, U. L. F., Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation, Boundary-Layer Meteorol., 42, 1, 55-78, (1988)
[66] Hommema, S. E.; Adrian, R. J., Packet structure of surface eddies in the atmospheric boundary layer, Boundary-Layer Meteorol., 106, 1, 147-170, (2003)
[67] Hristov, T.; Friehe, C.; Miller, S., Wave-coherent fields in air flow over ocean waves: identification of cooperative behavior buried in turbulence, Phys. Rev. Lett., 81, 23, 5245, (1998)
[68] Hultmark, M.; Vallikivi, M.; Bailey, S. C. C.; Smits, A. J., Turbulent pipe flow at extreme Reynolds numbers, Phys. Rev. Lett., 108, 9, (2012) · Zbl 1294.76182
[69] Hutchins, N.; Chauhan, K.; Marusic, I.; Monty, J.; Klewicki, J., Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory, Boundary-Layer Meteorol., 145, 2, 273-306, (2012)
[70] Hutchins, N.; Marusic, I., Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 1-28, (2007) · Zbl 1113.76004
[71] Hutchins, N.; Marusic, I., Large-scale influences in near-wall turbulence, Phil. Trans. R. Soc. Lond. A, 365, 1852, 647-664, (2007) · Zbl 1152.76421
[72] Hutchins, N.; Nickels, T. B.; Marusic, I.; Chong, M. S., Hot-wire spatial resolution issues in wall-bounded turbulence, J. Fluid Mech., 635, 103-136, (2009) · Zbl 1183.76025
[73] Jacob, C.; Anderson, W., Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: insights for aeolian processes, Boundary-Layer Meteorol., 162, 1, 21-41, (2017)
[74] Jiménez, J., Turbulent flows over rough walls, Annu. Rev. Fluid Mech., 36, 173-196, (2004) · Zbl 1125.76348
[75] Jiménez, J., Coherent structures in wall-bounded turbulence, J. Fluid Mech., 842, (2018)
[76] Johansson, C.; Smedman, A. S.; Högström, U.; Brasseur, J. G.; Khanna, S., Critical test of the validity of Monin-Obukhov similarity during convective conditions, J. Atmos. Sci., 58, 12, 1549-1566, (2001)
[77] Kaimal, J. C.; Finnigan, J. J., Atmospheric Boundary Layer Flows: Their Structure and Measurement, (1994), Oxford University Press
[78] Kaimal, J. C.; Wyngaard, J. C.; Izumi, Y.; Coté, O. R., Spectral characteristics of surface-layer turbulence, Q. J. R. Meteorol. Soc., 98, 417, 563-589, (1972)
[79] Kang, H. S.; Meneveau, C., Universality of large eddy simulation model parameters across a turbulent wake behind a heated cylinder, J. Turbul., 3, (2002)
[80] Khanna, S.; Brasseur, J. G., Analysis of Monin-Obukhov similarity from large-eddy simulation, J. Fluid Mech., 345, 251-286, (1997) · Zbl 0898.76044
[81] Khanna, S.; Brasseur, J. G., Three-dimensional buoyancy-and shear-induced local structure of the atmospheric boundary layer, J. Atmos. Sci., 55, 5, 710-743, (1998)
[82] Kim, K. C.; Adrian, R. J., Very large-scale motion in the outer layer, Phys. Fluids, 11, 2, 417-422, (1999) · Zbl 1147.76430
[83] Kleissl, J.; Kumar, V.; Meneveau, C.; Parlange, M. B., Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions, Water Resour. Res., 42, (2006)
[84] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layers, J. Fluid Mech., 30, 4, 741-773, (1967)
[85] Kovasznay, L. S. G.; Kibens, V.; Blackwelder, R. F., Large-scale motion in the intermittent region of a turbulent boundary layer, J. Fluid Mech., 41, 2, 283-325, (1970)
[86] Kumar, V.; Kleissl, J.; Meneveau, C.; Parlange, M. B., Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: atmospheric stability and scaling issues, Water Resour. Res., 42, 6, (2006)
[87] Kunkel, G. J.; Marusic, I., Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow, J. Fluid Mech., 548, 375-402, (2006)
[88] Lee, J. H.; Sung, H. J., Very-large-scale motions in a turbulent boundary layer, J. Fluid Mech., 673, 80-120, (2011) · Zbl 1225.76162
[89] Lemone, M. A., The structure and dynamics of horizontal roll vortices in the planetary boundary layer, J. Atmos. Sci., 30, 6, 1077-1091, (1973)
[90] Lemone, M. A., Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary layer, J. Atmos. Sci., 33, 7, 1308-1320, (1976)
[91] Louis, J. F., A parametric model of vertical eddy fluxes in the atmosphere, Boundary-Layer Meteorol., 17, 2, 187-202, (1979)
[92] Marusic, I.; Heuer, W. D. C., Reynolds number invariance of the structure inclination angle in wall turbulence, Phys. Rev. Lett., 99, 11, (2007)
[93] Marusic, I.; Hutchins, N., Study of the log-layer structure in wall turbulence over a very large range of Reynolds number, Flow Turbul. Combust., 81, 1-2, 115-130, (2008) · Zbl 1391.76178
[94] Marusic, I.; Kunkel, G. J., Streamwise turbulence intensity formulation for flat-plate boundary layers, Phys. Fluids, 15, 8, 2461-2464, (2003) · Zbl 1186.76353
[95] Marusic, I.; Kunkel, G. J.; Porté-Agel, F., Experimental study of wall boundary conditions for large-eddy simulation, J. Fluid Mech., 446, 309-320, (2001) · Zbl 1107.76304
[96] Marusic, I.; Mathis, R.; Hutchins, N., Predictive model for wall-bounded turbulent flow, Science, 329, 5988, 193-196, (2010) · Zbl 1226.76015
[97] Marusic, I.; Mckeon, B. J.; Monkewitz, P. A.; Nagib, H. M.; Smits, A. J.; Sreenivasan, K. R., Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues, Phys. Fluids, 22, 6, (2010) · Zbl 1190.76086
[98] Marusic, I.; Monty, J. P.; Hultmark, M.; Smits, A. J., On the logarithmic region in wall turbulence, J. Fluid Mech., 716, (2013) · Zbl 1284.76206
[99] Mathis, R.; Hutchins, N.; Marusic, I., Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers, J. Fluid Mech., 628, 311-337, (2009) · Zbl 1181.76008
[100] Mathis, R.; Hutchins, N.; Marusic, I., A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows, J. Fluid Mech., 681, 537-566, (2011) · Zbl 1241.76296
[101] Mathis, R.; Monty, J. P.; Hutchins, N.; Marusic, I., Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows, Phys. Fluids, 21, 11, (2009) · Zbl 1183.76346
[102] Mclean, I. R.
[103] Meinhart, C. D.; Adrian, R. J., On the existence of uniform momentum zones in a turbulent boundary layer, Phys. Fluids, 7, 4, 694-696, (1995)
[104] Meneveau, C.; Lund, T. S.; Cabot, W. H., A Lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech., 319, 353-385, (1996) · Zbl 0882.76029
[105] Meneveau, C.; Marusic, I., Generalized logarithmic law for high-order moments in turbulent boundary layers, J. Fluid Mech., 719, (2013) · Zbl 1284.76209
[106] Moeng, C. H., A large-eddy-simulation model for the study of planetary boundary-layer turbulence, J. Atmos. Sci., 41, 13, 2052-2062, (1984)
[107] Moeng, C. H.; Sullivan, P. P., A comparison of shear-and buoyancy-driven planetary boundary layer flows, J. Atmos. Sci., 51, 7, 999-1022, (1994)
[108] Moncrieff, J.; Valentini, R.; Greco, S.; Guenther, S.; Ciccioli, P., Trace gas exchange over terrestrial ecosystems: methods and perspectives in micrometeorology, J. Expl Bot., 48, 5, 1133-1142, (1997)
[109] Monin, A. S.; Obukhov, A. M., Turbulent mixing in the atmospheric surface layer, Tr. Akad. Nauk SSSR Geofiz. Inst., 24, 151, 163-187, (1954)
[110] Morris, S. C.; Stolpa, S. R.; Slaboch, P. E.; Klewicki, J. C., Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer, J. Fluid Mech., 580, 319-338, (2007) · Zbl 1113.76006
[111] Murlis, J.; Tsai, H. M.; Bradshaw, P., The structure of turbulent boundary layers at low Reynolds numbers, J. Fluid Mech., 122, 13-56, (1982)
[112] Nakagawa, H.; Nezu, I., Structure of space-time correlations of bursting phenomena in an open-channel flow, J. Fluid Mech., 104, 1-43, (1981)
[113] Nieuwstadt, F. T. M.; Mason, P. J.; Moeng, C.-H.; Schumann, U., Large-eddy simulation of the convective boundary layer: a comparison of four computer codes, Turbulent Shear Flows, 8, 343-367, (1993), Springer · Zbl 0873.76053
[114] Obukhov, A. M., Turbulence in an atmosphere with temperature inhomogeneities, Tr. Inst. Theor. Geofiz, 1, 95-115, (1946)
[115] Panofsky, H. A.; Tennekes, H.; Lenschow, D. H.; Wyngaard, J. C., The characteristics of turbulent velocity components in the surface layer under convective conditions, Boundary-Layer Meteorol., 11, 3, 355-361, (1977)
[116] Panton, R. L., Overview of the self-sustaining mechanisms of wall turbulence, Prog. Aerosp. Sci., 37, 4, 341-383, (2001)
[117] Parlange, M. B.; Eichinger, W. E.; Albertson, J. D., Regional scale evaporation and the atmospheric boundary layer, Rev. Geophys., 33, 1, 99-124, (1995)
[118] Pathikonda, G.; Christensen, K. T., Inner-outer interactions in a turbulent boundary layer overlying complex roughness, Phys. Rev. Fluids, 2, 4, (2017)
[119] Penman, H. L., Natural evaporation from open water, bare soil and grass, Proc. R. Soc. Lond. A, 193, 120-145, (1948)
[120] Perry, A. E.; Chong, M. S., On the mechanism of wall turbulence, J. Fluid Mech., 119, 173-217, (1982) · Zbl 0517.76057
[121] Perry, A. E.; Henbest, S.; Chong, M. S., A theoretical and experimental study of wall turbulence, J. Fluid Mech., 165, 163-199, (1986) · Zbl 0597.76052
[122] Philips, D. A.; Rossi, R.; Iaccarino, G., Large-eddy simulation of passive scalar dispersion in an urban-like canopy, J. Fluid Mech., 723, 404-428, (2013) · Zbl 1287.76149
[123] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech., 34, 1, 349-374, (2002) · Zbl 1006.76041
[124] Piomelli, U.; Ferziger, J.; Moin, P.; Kim, J., New approximate boundary conditions for large eddy simulations of wall-bounded flows, Phys. Fluids A, 1, 6, 1061-1068, (1989)
[125] Pope, S., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002
[126] Rajagopalan, S.; Antonia, R. A., Some properties of the large structure in a fully developed turbulent duct flow, Phys. Fluids, 22, 4, 614-622, (1979)
[127] Raupach, M. R.; Antonia, R. A.; Rajagopalan, S., Rough-wall turbulent boundary layers, Appl. Mech. Rev., 44, 1, 1-25, (1991)
[128] Robinson, S. K., Coherent motions in the turbulent boundary layer, Annu. Rev. Fluid Mech., 23, 1, 601-639, (1991)
[129] Salesky, S. T.; Chamecki, M., Random errors in turbulence measurements in the atmospheric surface layer: implications for Monin-Obukhov similarity theory, J. Atmos. Sci., 69, 12, 3700-3714, (2012)
[130] Salesky, S. T.; Chamecki, M.; Bou-Zeid, E., On the nature of the transition between roll and cellular organization in the convective boundary layer, Boundary-Layer Meteorol., 163, 1, 1-28, (2017)
[131] Salesky, S. T.; Katul, G. G.; Chamecki, M., Buoyancy effects on the integral lengthscales and mean velocity profile in atmospheric surface layer flows, Phys. Fluids, 25, 10, (2013)
[132] Schoppa, W.; Hussain, F., Coherent structure generation in near-wall turbulence, J. Fluid Mech., 453, 57-108, (2002) · Zbl 1141.76408
[133] Smits, A. J.; Mckeon, B. J.; Marusic, I., High-Reynolds number wall turbulence, Annu. Rev. Fluid Mech., 43, 353-375, (2011) · Zbl 1299.76002
[134] Squire, D. T.; Baars, W. J.; Hutchins, N.; Marusic, I., Inner-outer interactions in rough-wall turbulence, J. Turbul., 17, 12, 1159-1178, (2016)
[135] Sreenivasan, K. R., On the fine-scale intermittency of turbulence, J. Fluid Mech., 151, 81-103, (1985) · Zbl 0579.76060
[136] Sullivan, P. P.; Horst, T. W.; Lenschow, D. H.; Moeng, C. H.; Weil, J. C., Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling, J. Fluid Mech., 482, 1, 101-139, (2003) · Zbl 1119.76344
[137] Sullivan, P. P.; Patton, E. G., The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation, J. Atmos. Sci., 68, 10, 2395-2415, (2011)
[138] Sykes, R. I.; Henn, D. S., Large-eddy simulation of turbulent sheared convection, J. Atmos. Sci., 46, 8, 1106-1118, (1989)
[139] Tardu, S. F., Stochastic synchronization of the near wall turbulence, Phys. Fluids, 20, 4, (2008) · Zbl 1182.76747
[140] Theodorsen, T., Mechanism of turbulence, Proceedings of the Second Midwestern Conference on Fluid Mechanics, 1719, (1952), Ohio State University · Zbl 0142.44201
[141] Tomkins, C. D.; Adrian, R. J., Spanwise structure and scale growth in turbulent boundary layers, J. Fluid Mech., 490, 37-74, (2003) · Zbl 1063.76514
[142] Townsend, A. A., The Structure of Turbulent Shear Flow, (1976), Cambridge University Press · Zbl 0325.76063
[143] Volino, R. J.; Schultz, M. P.; Flack, K. A., Turbulence structure in rough-and smooth-wall boundary layers, J. Fluid Mech., 592, 263-293, (2007) · Zbl 1151.76359
[144] Wallace, J. M., Quadrant analysis in turbulence research: history and evolution, Annu. Rev. Fluid Mech., 48, 131-158, (2016) · Zbl 1356.76107
[145] Wallace, J. M.; Eckelmann, H.; Brodkey, R. S., The wall region in turbulent shear flow, J. Fluid Mech., 54, 1, 39-48, (1972)
[146] Wark, C. E.; Nagib, H. M., Experimental investigation of coherent structures in turbulent boundary layers, J. Fluid Mech., 230, 183-208, (1991)
[147] Weckwerth, T. M.; Horst, T. W.; Wilson, J. W., An observational study of the evolution of horizontal convective rolls, Mon. Weath. Rev., 127, 9, 2160-2179, (1999)
[148] Weckwerth, T. M.; Wilson, J. W.; Wakimoto, R. M., Thermodynamic variability within the convective boundary layer due to horizontal convective rolls, Mon. Weath. Rev., 124, 5, 769-784, (1996)
[149] Weckwerth, T. M.; Wilson, J. W.; Wakimoto, R. M.; Crook, N. A., Horizontal convective rolls: determining the environmental conditions supporting their existence and characteristics, Mon. Weath. Rev., 125, 4, 505-526, (1997)
[150] Wilczek, M.; Stevens, R. J. A. M.; Meneveau, C., Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models, J. Fluid. Mech, 769, (2015)
[151] Willmarth, W. W.; Lu, S. S., Structure of the Reynolds stress near the wall, J. Fluid Mech., 55, 1, 65-92, (1972)
[152] Wu, X.; Baltzer, J. R.; Adrian, R. J., Direct numerical simulation of a 30R long turbulent pipe flow at R+ = 685: large-and very large-scale motions, J. Fluid Mech., 698, 235-281, (2012) · Zbl 1250.76116
[153] Wu, Y.; Christensen, K. T., Outer-layer similarity in the presence of a practical rough-wall topology, Phys. Fluids, 19, (2007) · Zbl 1182.76832
[154] Wu, Y.; Christensen, K. T., Spatial structure of a turbulent boundary layer with irregular surface roughness, J. Fluid Mech., 655, 380-418, (2010) · Zbl 1197.76013
[155] Wyngaard, J. C.; Coté, O. R., The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer, J. Atmos. Sci., 28, 2, 190-201, (1971)
[156] Young, G. S.; Kristovich, D. A. R.; Hjelmfelt, M. R.; Foster, R. C., Rolls, streets, waves, and more: a review of quasi-two-dimensional structures in the atmospheric boundary layer, Bull. Am. Meteorol. Soc., 83, 7, 997-1001, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.