×

The combined effects of shear and buoyancy on phase boundary stability. (English) Zbl 1415.76241

Summary: We study the effects of externally imposed shear and buoyancy driven flows on the stability of a solid-liquid interface. A linear stability analysis of shear and buoyancy-driven flow of a melt over its solid phase shows that buoyancy is the only destabilizing factor and that the regime of shear flow here, by inhibiting vertical motions and hence the upward heat flux, stabilizes the system. It is also shown that all perturbations to the solid-liquid interface decay at a very modest shear flow strength. However, at much larger shear-flow strength, where flow instabilities coupled with buoyancy might enhance vertical motions, a re-entrant instability may arise.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
80A22 Stefan problems, phase changes, etc.

Software:

chebop
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Camporeale, C.; Ridolfi, L., Ice ripple formation at large Reynolds numbers, J. Fluid Mech., 694, 225-251, (2012) · Zbl 1250.76084
[2] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, (2013), Dover Publications
[3] Chung, C. A.; Chen, F., Morphological instability in a directionally solidifying binary solution with an imposed shear flow, J. Fluid Mech., 436, 85-106, (2001) · Zbl 0986.76019
[4] Claudin, P.; Durán, O.; Andreotti, B., Dissolution instability and roughening transition, J. Fluid Mech., 832, R2, (2017) · Zbl 1419.76262
[5] Coriell, S. R.; Cordes, M. R.; Boettinger, W. J.; Sekerka, R. F., Convective and interfacial instabilities during unidirectional solidification of a binary alloy, J. Cryst. Growth, 49, 1, 13-28, (1980)
[6] Coriell, S. R.; Mcfadden, G. B.; Boisvert, R. F.; Sekerka, R. F., Effect of a forced couette flow on coupled convective and morphological instabilities during unidirectional solidification, J. Cryst. Growth, 69, 1, 15-22, (1984)
[7] Davies Wykes, M. S.; Huang, J. M.; Hajjar, G. A.; Ristroph, L., Self-sculpting of a dissolvable body due to gravitational convection, Phys. Rev. Fluids, 3, 4, (2018)
[8] Davis, S. H., Hydrodynamic interactions in directional solidification, J. Fluid Mech., 212, 241-262, (1990)
[9] Davis, S. H.; Müller, U.; Dietsche, C., Pattern selection in single-component systems coupling Bénard convection and solidification, J. Fluid Mech., 144, 133-151, (1984)
[10] Delves, R. T., Theory of stability of a solid – liquid interface during growth from stirred melts, J. Cryst. Growth, 3, 562-568, (1968)
[11] Delves, R. T., Theory of the stability of a solid – liquid interface during growth from stirred melts II, J. Cryst. Growth, 8, 1, 13-25, (1971)
[12] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability, (2004), Cambridge University Press
[13] Driscoll, T. A.; Bornemann, F.; Trefethen, L. N., The chebop system for automatic solution of differential equations, BIT, 48, 4, 701-723, (2008) · Zbl 1162.65370
[14] Epstein, M.; Cheung, F. B., Complex freezing-melting interfaces in fluid flow, Annu. Rev. Fluid Mech., 15, 1, 293-319, (1983)
[15] Feltham, D. L.; Untersteiner, N.; Wettlaufer, J. S.; Worster, M. G., Sea ice is a mushy layer, Geophys. Res. Lett., 33, 14, (2006)
[16] Feltham, D. L.; Worster, M. G., Flow-induced morphological instability of a mushy layer, J. Fluid Mech., 391, 337-357, (1999) · Zbl 0989.76022
[17] Feltham, D. L.; Worster, M. G.; Wettlaufer, J. S., The influence of ocean flow on newly forming sea ice, J. Geophys. Res.-Oceans, 107, C2, 1-9, (2002)
[18] Forth, S. A.; Wheeler, A. A., Hydrodynamic and morphological stability of the unidirectional solidification of a freezing binary alloy: a simple model, J. Fluid Mech., 202, 339-366, (1989) · Zbl 0677.76044
[19] Gilpin, R. R.; Hirata, T.; Cheng, K. C., Wave formation and heat transfer at an ice-water interface in the presence of a turbulent flow, J. Fluid Mech., 99, 3, 619-640, (1980)
[20] Glicksman, M. E.; Coriell, S. R.; Mcfadden, G. B., Interaction of flows with the crystal-melt interface, Annu. Rev. Fluid Mech., 18, 1, 307-335, (1986)
[21] Huppert, H. E., The fluid mechanics of solidification, J. Fluid Mech., 212, 209-240, (1990)
[22] Liu, Y.; Ning, L.; Ecke, R. E., Dynamics of surface patterning in salt-crystal dissolution, Phys. Rev. E, 53, 6, R5572, (1996)
[23] Mcphee, M. G., Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes, (2008), Springer
[24] Meakin, P.; Jamtveit, B., Geological pattern formation by growth and dissolution in aqueous systems, Proc. R. Soc. Lond. A, 659-694, (2009)
[25] Monin, A. S. & Yaglom, A. M.1971Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. Dover Publications.
[26] Neufeld, J. A.; Wettlaufer, J. S., An experimental study of shear-enhanced convection in a mushy layer, J. Fluid Mech., 612, 363-385, (2008) · Zbl 1151.76339
[27] Neufeld, J. A.; Wettlaufer, J. S., Shear-enhanced convection in a mushy layer, J. Fluid Mech., 612, 339-361, (2008) · Zbl 1151.76462
[28] Neufeld, J. A.; Wettlaufer, J. S.; Feltham, D. L.; Worster, M. G., Corrigendum to flow-induced morphological instability of a mushy layer, J. Fluid Mech., 549, 442-443, (2006)
[29] Ramudu, E.; Hirsh, B. H.; Olson, P.; Gnanadesikan, A., Turbulent heat exchange between water and ice at an evolving ice – water interface, J. Fluid Mech., 798, 572-597, (2016)
[30] Schulze, T. P.; Davis, S. H., The influence of oscillatory and steady shears on interfacial stability during directional solidification, J. Cryst. Growth, 143, 3-4, 317-333, (1994)
[31] Schulze, T. P.; Davis, S. H., Shear stabilization of morphological instability during directional solidification, J. Cryst. Growth, 149, 3-4, 253-265, (1995)
[32] Schulze, T. P.; Davis, S. H., Shear stabilization of a solidifying front: weakly nonlinear analysis in a long-wave limit, Phys. Fluids, 8, 9, 2319-2336, (1996) · Zbl 1027.76571
[33] Solari, L.; Parker, G., Morphodynamic modeling of the basal boundary of ice cover on brackish lakes, J. Geophys. Res. Earth Surf., 118, 3, 1432-1442, (2013)
[34] Sreenivasan, K. R.1989The turbulent boundary layer. In Frontiers in Experimental Fluid Mechanics, pp. 159-209. Springer.
[35] Toppaladoddi, S.; Wettlaufer, J. S., Penetrative convection at high Rayleigh numbers, Phys. Rev. Fluids, 3, (2018)
[36] Turner, J. S., Buoyancy Effects in Fluids, (1979), Cambridge University Press · Zbl 0443.76091
[37] Untersteiner, N.; Badgley, F. I., Roughness Parameters of Sea Ice, J. Geophys. Res., 70, 18, 4573-4577, (1965)
[38] Veronis, G., Penetrative convection, Astrophys. J., 137, 641-663, (1963) · Zbl 0123.46103
[39] Wettlaufer, J. S., Heat flux at the ice-ocean interface, J. Geophys. Res., 96, C4, 7215-7236, (1991)
[40] Wettlaufer, J. S.; Worster, M. G.; Huppert, H. E., Natural convection during solidification of an alloy from above with application to the evolution of sea ice, J. Fluid Mech., 344, 291-316, (1997)
[41] Worster, M. G., Natural convection in a mushy layer, J. Fluid Mech., 224, 335-359, (1991) · Zbl 0717.76104
[42] Worster, M. G., Instabilities of the liquid and mushy regions during solidification of alloys, J. Fluid Mech., 237, 649-669, (1992) · Zbl 0747.76054
[43] Worster, M. G., Convection in mushy layers, Annu. Rev. Fluid Mech., 29, 1, 91-122, (1997)
[44] Worster, M. G.2000Solidification of fluids. In Perspectives in Fluid Dynamics – a Collective Introduction to Current Research (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), pp. 393-446. Cambridge University Press. · Zbl 0993.76085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.