Improving SAT-based bounded model checking for existential CTL through path reuse.

*(English)*Zbl 1415.68149
Barthe, Gilles (ed.) et al., LPAR-22. 22nd international conference on logic for programming, artificial intelligence and reasoning, Awassa, Ethiopia, November 17–21, 2018. Selected papers. Manchester: EasyChair. EPiC Ser. Comput. 57, 471-487 (2018).

Summary: A complementary technique to decision-diagram-based model checking is SAT-based bounded model checking (BMC), which reduces the model checking problem to a propositional satisfiability problem so that the corresponding formula is satisfiable iff a counterexample or witness exists. Due to the branching time nature of computation tree logic (CTL), BMC for the universal fragment of CTL (ACTL) considers a counterexample in a bounded model as a set of bounded paths. Since the existential fragment of CTL (ECTL) is dual to ACTL, and ACTL formulas are often negated to obtain ECTL ones in practice, we focus on BMC for ECTL and propose an improved translation that generates a possibly smaller propositional formula by reducing the number of bounded paths to be considered in a witness. Experimental results show that the formulas generated by our approach are often easier for a SAT solver to answer. In addition, we propose a simple modification to the translation so that it is also defined for models with deadlock states.

For the entire collection see [Zbl 1407.68021].

For the entire collection see [Zbl 1407.68021].