×

zbMATH — the first resource for mathematics

Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. (English) Zbl 1415.62027
Summary: We consider marked empirical processes indexed by a randomly projected functional covariate to construct goodness-of-fit tests for the functional linear model with scalar response. The test statistics are built from continuous functionals over the projected process, resulting in computationally efficient tests that exhibit root-\(n\) convergence rates and circumvent the curse of dimensionality. The weak convergence of the empirical process is obtained conditionally on a random direction, whilst the almost surely equivalence between the testing for significance expressed on the original and on the projected functional covariate is proved. The computation of the test in practice involves calibration by wild bootstrap resampling and the combination of several \(p\)-values, arising from different projections, by means of the false discovery rate method. The finite sample properties of the tests are illustrated in a simulation study for a variety of linear models, underlying processes, and alternatives. The software provided implements the tests and allows the replication of simulations and data applications.

MSC:
62G10 Nonparametric hypothesis testing
62J05 Linear regression; mixed models
62G09 Nonparametric statistical resampling methods
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Aneiros-Pérez, G. and Vieu, P. (2006). Semi-functional partial linear regression. Statist. Probab. Lett.76 1102–1110. · Zbl 1090.62036
[2] Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist.29 1165–1188. · Zbl 1041.62061
[3] Bickel, P. J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates. Ann. Statist.1 1071–1095. · Zbl 0275.62033
[4] Bierens, H. J. (1982). Consistent model specification tests. J. Econometrics20 105–134. · Zbl 0549.62076
[5] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[6] Bücher, A., Dette, H. and Wieczorek, G. (2011). Testing model assumptions in functional regression models. J. Multivariate Anal.102 1472–1488. · Zbl 1219.62075
[7] Cardot, H., Mas, A. and Sarda, P. (2007). CLT in functional linear regression models. Probab. Theory Related Fields138 325–361. · Zbl 1113.60025
[8] Cardot, H., Ferraty, F., Mas, A. and Sarda, P. (2003). Testing hypotheses in the functional linear model. Scand. J. Stat.30 241–255. · Zbl 1034.62037
[9] Chiou, J.-M. and Müller, H.-G. (2007). Diagnostics for functional regression via residual processes. Comput. Statist. Data Anal.51 4849–4863. · Zbl 1162.62394
[10] Cuesta-Albertos, J. A. and Febrero-Bande, M. (2010). A simple multiway ANOVA for functional data. TEST19 537–557. · Zbl 1203.62122
[11] Cuesta-Albertos, J. A., Fraiman, R. and Ransford, T. (2007). A sharp form of the Cramér–Wold theorem. J. Theoret. Probab.20 201–209. · Zbl 1124.60004
[12] Cuesta-Albertos, J. A., del Barrio, E., Fraiman, R. and Matrán, C. (2007). The random projection method in goodness of fit for functional data. Comput. Statist. Data Anal.51 4814–4831. · Zbl 1162.62363
[13] Cuesta-Albertos, J. A., García-Portugués, E., Febrero-Bande, M. and González-Manteiga, W. (2019). Supplement to “Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes.” DOI:10.1214/18-AOS1693SUPP.
[14] D’Agostino, R. B. and Stephens, M. A., eds. (1986) Goodness-of-Fit Techniques. Statistics: Textbooks and Monographs68. Dekker, Inc., New York. · Zbl 0597.62030
[15] Delsol, L., Ferraty, F. and Vieu, P. (2011a). Structural test in regression on functional variables. J. Multivariate Anal.102 422–447. · Zbl 1207.62096
[16] Delsol, L., Ferraty, F. and Vieu, P. (2011b). Structural tests in regression on functional variable. In Recent Advances in Functional Data Analysis and Related Topics 77–83. Physica-Verlag/Springer, Heidelberg. · Zbl 1207.62096
[17] Durbin, J. (1973). Weak convergence of the sample distribution function when parameters are estimated. Ann. Statist.1 279–290. · Zbl 0256.62021
[18] Escanciano, J. C. (2006). A consistent diagnostic test for regression models using projections. Econometric Theory22 1030–1051. · Zbl 1170.62318
[19] Febrero-Bande, M. and Oviedo de la Fuente, M. (2017). fda.usc: Functional Data Analysis and Utilities for Statistical Computing (fda.usc). R package version 1.3.1. Available at http://cran.r-project.org/web/packages/fda.usc/.
[20] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York. · Zbl 1119.62046
[21] Fraiman, R. and Muniz, G. (2001). Trimmed means for functional data. TEST10 419–440. · Zbl 1016.62026
[22] García-Portugués, E., González-Manteiga, W. and Febrero-Bande, M. (2014). A goodness-of-fit test for the functional linear model with scalar response. J. Comput. Graph. Statist.23 761–778.
[23] González-Manteiga, W. and Crujeiras, R. M. (2013). An updated review of goodness-of-fit tests for regression models. TEST22 361–411. · Zbl 1273.62086
[24] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist.21 1926–1947. · Zbl 0795.62036
[25] Hilgert, N., Mas, A. and Verzelen, N. (2013). Minimax adaptive tests for the functional linear model. Ann. Statist.41 838–869. · Zbl 1267.62059
[26] Hoffmann-Jørgensen, J. and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Probab.4 587–599. · Zbl 0368.60022
[27] Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer, New York.
[28] Horváth, L. and Reeder, R. (2013). A test of significance in functional quadratic regression. Bernoulli19 2120–2151. · Zbl 06254556
[29] Kokoszka, P., Maslova, I., Sojka, J. and Zhu, L. (2008). Testing for lack of dependence in the functional linear model. Canad. J. Statist.36 207–222. · Zbl 1144.62316
[30] Lavergne, P. and Patilea, V. (2008). Breaking the curse of dimensionality in nonparametric testing. J. Econometrics143 103–122. · Zbl 1418.62199
[31] McQuarrie, A. D. (1999). A small-sample correction for the Schwarz SIC model selection criterion. Statist. Probab. Lett.44 79–86. · Zbl 1087.62507
[32] Nadaraja, È. A. (1964). On a regression estimate. Teor. Veroyatn. Primen.9 157–159.
[33] Patilea, V., Sánchez-Sellero, C. and Saumard, M. (2012). Projection-based nonparametric testing for functional covariate effect. Preprint. Available at arXiv:1205.5578.
[34] Patilea, V., Sánchez-Sellero, C. and Saumard, M. (2016). Testing the predictor effect on a functional response. J. Amer. Statist. Assoc.111 1684–1695.
[35] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New York. · Zbl 1079.62006
[36] Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist.25 613–641. · Zbl 0926.62035
[37] Stute, W., González Manteiga, W. and Presedo Quindimil, M. (1998). Bootstrap approximations in model checks for regression. J. Amer. Statist. Assoc.93 141–149. · Zbl 0902.62027
[38] Watson, G. S. (1964). Smooth regression analysis. Sankhya, Ser. A26 359–372. · Zbl 0137.13002
[39] Zheng, J. X. (1996). A consistent test of functional form via nonparametric estimation techniques. J. Econometrics75 263–289. · Zbl 0865.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.