Zang, Aibin Kato’s type theorems for the convergence of Euler-Voigt equations to Euler equations with drichlet boundary conditions. (English) Zbl 1415.35222 Discrete Contin. Dyn. Syst. 39, No. 9, 4945-4953 (2019). Summary: After investigating existence and uniqueness of the global strong solutions for Euler-Voigt equations under Dirichlet conditions, we obtain the Kato’s type theorems for the convergence of the Euler-Voigt equations to Euler equations. More precisely, the necessary and sufficient conditions that the solution of Euler-Voigt equation converges to the one of Euler equations, as \( \alpha\to 0 \), can be obtained. Cited in 1 Document MSC: 35Q30 Navier-Stokes equations 76D05 Navier-Stokes equations for incompressible viscous fluids 76D10 Boundary-layer theory, separation and reattachment, higher-order effects Keywords:Euler-Voigt equations; Kato’s theorem; nonslip boundary conditions; vanishing filtered parameter limit PDF BibTeX XML Cite \textit{A. Zang}, Discrete Contin. Dyn. Syst. 39, No. 9, 4945--4953 (2019; Zbl 1415.35222) Full Text: DOI OpenURL