×

Reliability of information-based integration of EEG and fMRI data: a simulation study. (English) Zbl 1414.92153

Summary: Most studies involving simultaneous electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data rely on the first-order, affine-linear correlation of EEG and fMRI features within the framework of the general linear model. An alternative is the use of information-based measures such as mutual information and entropy, which can also detect higher-order correlations present in the data. The estimate of information-theoretic quantities might be influenced by several parameters, such as the numerosity of the sample, the amount of correlation between variables, and the discretization (or binning) strategy of choice. While these issues have been investigated for invasive neurophysiological data and a number of bias-correction estimates have been developed, there has been no attempt to systematically examine the accuracy of information estimates for the multivariate distributions arising in the context of EEG-fMRI recordings. This is especially important given the differences between electrophysiological and EEG-fMRI recordings. In this study, we drew random samples from simulated bivariate and trivariate distributions, mimicking the statistical properties of EEG-fMRI data. We compared the estimated information shared by simulated random variables with its numerical value and found that the interaction between the binning strategy and the estimation method influences the accuracy of the estimate. Conditional on the simulation assumptions, we found that the equipopulated binning strategy yields the best and most consistent results across distributions and bias correction methods. We also found that within bias correction techniques, the asymptotically debiased (TPMC), the jackknife debiased (JD), and the best upper bound (BUB) approach give similar results, and those are consistent across distributions.

MSC:

92C55 Biomedical imaging and signal processing
92C20 Neural biology
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

bootstrap
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbott, L. F. (1999). The effect of correlated variability on the accuracy of a population code, 101, 91-101.
[2] Bagshaw, A. P., & Warbrick, T. (2007). Single trial variability of EEG and fMRI responses to visual stimuli. NeuroImage, 38, 280-292. ,
[3] Borst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nat. Neurosci., 2, 947-957. ,
[4] Caballero-Gaudes, C., Van de Ville, D., Grouiller, F., Thornton, R., Lemieux, L., Seeck, M., … Vulliemoz, S. (2013). Mapping interictal epileptic discharges using mutual information between concurrent EEG and fMRI. NeuroImage, 68, 248-262. ,
[5] Carlton, A. G. (1969). On the bias of information estimates. Psychological Bulletin, 71, 108-109. ,
[6] Chao, A., & Shen, T.-J. (2003). Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environmental and Ecological Statistics, 10, 429-443. ,
[7] Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New York: Wiley Interscience. · Zbl 1140.94001
[8] de Araujo, D. B., Tedeschi, W., Santos, A. C., Elias, J., Neves, U. P. C., & Baffa, O. (2003). Shannon entropy applied to the analysis of event-related fMRI time series. NeuroImage, 20, 311-317. ,
[9] Debener, S., Ullsramon Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci., 25, 11730-11737. ,
[10] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1), 1-26. , · Zbl 0406.62024
[11] Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall. , · Zbl 0835.62038
[12] Eichele, T., Specht, K., Moosmann, M., Jongsma, M. L. a, Quiroga, R. Q., Nordby, H., & Hugdahl, K. (2005). Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 102, 17798-17803. ,
[13] Fuhrmann Alpert, G., Hein, G., Tsai, N., Naumer, M. J., & Knight, R. T. (2008). Temporal characteristics of audiovisual information processing. Journal of neuroscience, 28, 5344-5349. ,
[14] Fuhrmann Alpert, G., Sun, F. T., Handwerker, D., D’Esposito, M., & Knight, R. T. (2007). Spatio-temporal information analysis of event-related BOLD responses. NeuroImage, 34, 1545-1561. ,
[15] Gawne, T. J., & Richmond, B. J. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons?J. Neurosci., 13, 2758-2771.
[16] Goldberg, D. H., Victor, J. D., Gardner, E. P., & Gardner, D. (2009). Spike train analysis toolkit: Enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 7, 165-178. ,
[17] Goldman, R. I., Wei, C.-Y., Philiastides, M. G., Gerson, A. D., Friedman, D., Brown, T. R., & Sajda, P. (2009). Single-trial discrimination for integrating simultaneous EEG and fMRI: Identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task. NeuroImage, 47, 136-147. ,
[18] Herrmann, C. S., & Debener, S. (2008). Simultaneous recording of EEG and BOLD responses: A historical perspective. International Journal of Psychophysiology, 67, 161-168. ,
[19] Hu, L., Liang, M., Mouraux, A., Wise, R. G., Hu, Y., & Iannetti, G. D. (2011). Taking into account latency, amplitude, and morphology: Improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression. Journal of Neurophysiology, 106, 3216-3229. ,
[20] Ma, S. (1981). Calculation of entropy from data of motion. Journal of Statistical Physics, 26, 221-240. ,
[21] Magri, C., Whittingstall, K., Singh, V., Logothetis, N. K., & Panzeri, S. (2009). A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neuroscience, 10, 81. ,
[22] Meucci, A. (2011). A short, comprehensive, practical guide to copulas. Social Science Research Network working paper series.
[23] Miller, G. A. (1955). Note on the bias of information estimates. In H. Quastler (Ed.), Information theory in psychology: Problems and methods (pp. 95-100). Glencoe, IL: Free Press.
[24] Mulert, C., & Lemieux, L. (Eds.). (2010). EEG-fMRI physiological basis, technique, and application. Berlin: Springer-Verlag.
[25] Ojemann, G. A., Ojemann, J., & Ramsey, N. F. (2013). Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex. Frontiers in Human Neuroscience, 7, 34. ,
[26] Optican, L. M., Gawne, T. J., Richmond, B. J., & Joseph, P. J. (1991). Unbiased measures of transmitted information and channel capacity from multivariate neuronal data. Biol. Cybern., 65, 305-310. ,
[27] Ostwald, D., & Bagshaw, A. P. (2011). Information theoretic approaches to functional neuroimaging. Magnetic Resonance Imaging, 29, 1417-1428. ,
[28] Ostwald, D., Porcaro, C., & Bagshaw, A. P. (2010). An information theoretic approach to EEG-fMRI integration of visually evoked responses. NeuroImage, 49, 498-516. ,
[29] Ostwald, D., Porcaro, C., & Bagshaw, A. P. (2011). Voxel-wise information theoretic EEG-fMRI feature integration. NeuroImage, 55, 1270-1286. ,
[30] Ostwald, D., Porcaro, C., Mayhew, S. D., & Bagshaw, A. P. (2012). EEG-fMRI based information theoretic characterization of the human perceptual decision system. PloS one, 7, e33896. ,
[31] Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15, 1191-1253. , · Zbl 1052.62003
[32] Panzeri, S., Magri, C., & Logothetis, N. K. (2008). On the use of information theory for the analysis of the relationship between neural and imaging signals. Magnetic Resonance Imaging, 26, 1015-1025. ,
[33] Panzeri, S., Senatore, R., Montemurro, M. A., & Petersen, R. S. (2007). Correcting for the sampling bias problem in spike train information measures. J. Neurophysiol., 98, 1064-1072. ,
[34] Panzeri, S., & Treves, A. (1996). Analytical estimates of limited sampling biases in different information measures. Neural Computation in Neural Systems, 7, 87-107. , · Zbl 0898.92013
[35] Pouliot, P., Tremblay, J., Robert, M., Vannasing, P., Lepore, F., Lassonde, M., … Lesage, F. (2012). Nonlinear hemodynamic responses in human epilepsy: A multimodal analysis with fNIRS-EEG and fMRI-EEG. Journal of Neuroscience Methods, 204, 326-340. ,
[36] Quian Quiroga, R., & Panzeri, S. (2009). Extracting information from neuronal populations: Information theory and decoding approaches. Nature reviews. Neuroscience, 10, 173-185. ,
[37] Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1996). Spikes: Exploring the neural code. Cambridge, MA: MIT Press. · Zbl 0912.92004
[38] Ritter, P., & Villringer, A. (2006). Simultaneous {EEG}-f{MRI}. Neuroscience and Biobehavioral Reviews, 30, 823-838. ,
[39] Schmidt. (2007). Coping with copulas. In J. Rank (Ed.), Copulas: From theory to application in finance. London: Risk Books.
[40] Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-423, 623-656. , · Zbl 1154.94303
[41] Sotero, R. C., & Trujillo-Barreto, N. J. (2008). Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. NeuroImage, 39, 290-309. ,
[42] Strong, S. P., Koberle, R., de Ruyter van Steveninck, R., & Bialek, W. (1998). Physical Review Letters, 80, 197-200. ,
[43] Treves, A., & Panzeri, S. (1995). The upward bias in measures of information derived from limited data samples. Neural Computation, 7, 399-407. ,
[44] Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial Journal, 2, 1-25. · Zbl 1081.62564
[45] Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin and Review, 7, 424-465. ,
[46] Venter, G. G. (2002). Tails of copulas. Proceedings of the Casualty Actuarial Society, 89, 68-113.
[47] Victor, J. D. (2006). Approaches to information-theoretic analysis of neural activity. Biological Theory, 1, 302-316. ,
[48] Vulliemoz, S., Lemieux, L., Daunizeau, J., Michel, C. M., & Duncan, J. S. (2010). The combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia, 51, 491-505. ,
[49] Wolpert, D. H., & Wolf, D. R. (1995). Estimating functions of probability distributions from a finite set of samples. Phys. Rev. E Stat. Phys.: Plasmas Fluids Relat Interdiscip Topics, 52, 6841-6854. ,
[50] Wong, C. W., Olafsson, V., Tal, O., & Liu, T. T. (2013). The amplitude of the resting-state fMRI global signal is related to EEG vigilance measures. NeuroImage, 83, 983-90. ,
[51] Yeśsilyurt, B., Uğurbil, K., & Uludazğ, K. (2008). Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magn. Reson. Imaging, 26, 853-862. ,
[52] Zhang, N., Zhu, X.-H., & Chen, W. (2008). Investigating the source of BOLD nonlinearity in human visual cortex in response to paired visual stimuli. Neuroimage, 43, 204-212. ,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.