×

Impact of flexible periodic premiums on variable annuity guarantees. (English) Zbl 1414.91165

Summary: In this article, we study the fair fee of a flexible premium variable annuity (FPVA), in which the policyholder can choose to pay periodic premiums during the accumulation phase instead of a single initial premium. We are able to express fair fees using a fast and accurate approximation based on bounds on the price of the FPVA. We identify scenarios that are particularly costly for the insurer. Our study could help insurers estimate the magnitude of typical underpricing when offering flexible-premium variable annuities with the same fee as the corresponding single-premium variable annuity.

MSC:

91B30 Risk theory, insurance (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Albrecher, H.; Mayer, P.; Schoutens, W., General Lower Bounds for Arithmetic Asian Option Prices, Applied Mathematical Finance, 15, 2, 123-149, (2008) · Zbl 1134.91394
[2] Andersen, L. B., Efficient Simulation of the Heston Stochastic Volatility Model, (2007)
[3] Bauer, D.; Kling, A.; Russ, J., A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities, ASTIN Bulletin, 38, 2, 621-651, (2008) · Zbl 1274.91399
[4] Bernard, C.; Kwak, M., Semi-static Hedging of Variable Annuities, Insurance: Mathematics and Economics, 67, 173-186, (2016) · Zbl 1348.91128
[5] Boyle, P.; Lin, X., Bounds on Contingent Claims Based on Several Assets, Journal of Financial Economics, 46, 383-400, (1997)
[6] Boyle, P. P.; Hardy, M. R., Guaranteed Annuity Options, ASTIN Bulletin, 33, 2, 125-152, (2003) · Zbl 1098.91527
[7] Broadie, M.; Detemple, J., American Capped Call Options on Dividend-Paying Assets, Review of Financial Studies, 8, 1, 161-191, (1995)
[8] Broadie, M.; Kaya, Ö., Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes, Operations Research, 54, 2, 217-231, (2006) · Zbl 1167.91363
[9] Chi, Y.; Lin, S. X., Are Flexible Premium Variable Annuities Underpriced?, ASTIN Bulletin, 42, 2, 559-574, (2012) · Zbl 1277.91078
[10] Coleman, T. F.; Li, Y.; Patron, M.-C., Hedging Guarantees in Variable Annuities Under Both Equity and Interest Rate Risks, Insurance: Mathematics and Economics, 38, 2, 215-228, (2006) · Zbl 1128.91020
[11] Deelstra, G.; Rayée, G.; Vanduffel, S.; Yao, J., Using Model-Independent Lower Bounds to Improve Pricing of Asian Style Options in Lévy Markets, ASTIN Bulletin, 44, 2, 237-276, (2014) · Zbl 1290.91159
[12] Denuit, M.; Dhaene, J.; Goovaerts, M.; Kaas, R., Actuarial Theory for Dependent Risks: Measures, Orders and Models, (2006), New York: John Wiley & Sons, New York
[13] Dhaene, J.; Denuit, M.; Goovaerts, M. J.; Kaas, R.; Vyncke, D., The Concept of Comonotonicity in Actuarial Science and Finance: Theory, Insurance: Mathematics and Economics, 31, 1, 3-33, (2002) · Zbl 1051.62107
[14] Dhaene, J.; Vanduffel, S.; Goovaerts, M.; Kaas, R.; Tang, Q.; Vyncke, D., Risk Measures and Comonotonicity: A Review, Stochastic models, 22, 4, 573-606, (2006) · Zbl 1159.91403
[15] Dhaene, J.; Vanduffel, S.; Goovaerts, M. J.; Kaas, R.; Vyncke, D., Comonotonic Approximations for Optimal Portfolio Selection Problems, Journal of Risk and Insurance, 72, 2, 253-300, (2005)
[16] Dickson, D. C.; Hardy, M. R.; Waters, H. R., Actuarial Mathematics for Life Contingent Risks. 2nd ed, (2013), Cambridge: Cambridge University Press, Cambridge · Zbl 1271.91001
[17] Feng, R.; Jing, X.; Dhaene, J., Comonotonic Approximations of Risk Measures for Variable Annuity Guaranteed Benefits with Dynamic Policyholder Behavior, (2016) · Zbl 1354.91066
[18] Fusai, G.; Meucci, A., Pricing Discretely Monitored Asian Option under Lévy Processes, Journal of Banking and Finance, 32, 2076-2088, (2008)
[19] Hardy, M., Hedging and Reserving for Single-Premium Segregated Fund Contracts, North American Actuarial Journal, 4, 2, 63-74, (2000) · Zbl 1083.91518
[20] Hardy, M. R., Investment Guarantees: Modelling and Risk Management for Equity-Linked Life Insurance, (2003), New York: Wiley, New York · Zbl 1092.91042
[21] Heston, S. L., A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, 6, 2, 327-343, (1993) · Zbl 1384.35131
[22] Kaas, R.; Dhaene, J.; Vyncke, D.; Goovaerts, M.; Denuit, M., A Simple Geometric Proof That Comonotonic Risks Have the Convex-largest Sum, ASTIN Bulletin, 32, 1, 71-80, (2002) · Zbl 1061.62511
[23] Karlin, S., Total Positivity, (1968), Stanford: Stanford University Press, Stanford
[24] Kolkiewicz, A.; Liu, Y., Semi-Static Hedging for GMWB in Variable Annuities, North American Actuarial Journal, 16, 112-140, (2012) · Zbl 1291.91205
[25] Marshall, C.; Hardy, M.; Saunders, D., Measuring the Effectiveness of Static Hedging Strategies for a Guaranteed Minimum Income Benefit, North American Actuarial Journal, 16, 2, 143-182, (2012) · Zbl 1291.91244
[26] Marshall, C.; Hardy, M. R.; Saunders, D., Valuation of a Guaranteed Minimum Income Benefit, North American Actuarial Journal, 14, 1, 40-58, (2010)
[27] Facts about the New York Life Flexible Premium Variable Annuity, (2011)
[28] Palmer, B., Equity-Indexed Annuities: Fundamental Concepts and Issues, (2006)
[29] Rogers, L.; Shi, Z., The Value of an Asian Option, Journal of Applied Probability, 32, 1077-1088, (1995) · Zbl 0839.90013
[30] Vanduffel, S.; Dhaene, J.; Goovaerts, M., On the Evaluation of Saving Consumption Plans, Journal of Pension Economics and Finance, 4, 1, 17-30, (2005)
[31] Vanduffel, S.; Chen, X.; Dhaene, J.; Goovaerts, M.; Henrard, L.; Kaas, R., Optimal Approximations for Risk Measures of Sums of Lognormals Based on Conditional Expectations, Journal of Computational and Applied Mathematics, 221, 1, 202-218, (2008) · Zbl 1154.91021
[32] Vanduffel, S.; Shang, Z.; Henrard, L.; Dhaene, J.; Valdez, E. A., Analytic Bounds and Approximations for Annuities and Asian Options, Insurance: Mathematics and Economics, 42, 3, 1109-1117, (2008) · Zbl 1141.91550
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.