×

zbMATH — the first resource for mathematics

Resolving the black hole causality paradox. (English) Zbl 1414.83036
Summary: The black hole information paradox is really a combination of two problems: the causality paradox and the entanglement problem. The causality paradox arises because in the semiclassical approximation infalling matter gets causally trapped inside its own horizon; it is therefore unable to send its information back to infinity if we disallow propagation outside the light cone. We show how the causality paradox is resolved in the fuzzball paradigm. One needs to distinguish between two kinds of Rindler spaces: (a) Rindler space obtained by choosing accelerating coordinates in Minkowski space and (b) ‘pseudo-Rindler’ space, which describes the region near the surface of a fuzzball. These two spaces differ in their vacuum fluctuations. While low energy waves propagate the same way on both spaces, infalling objects with energies \(E\gg T\) suffer an ‘entropy enhanced tunneling’ in the pseudo-Rindler spacetime (b); this leads to the nucleation of a fuzzball before the infalling object gets trapped inside a horizon.

MSC:
83C57 Black holes
83E30 String and superstring theories in gravitational theory
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hawking, SW, No article title, Commun. Math. Phys., 43, 199, (1975) · Zbl 1378.83040
[2] Hawking, SW, No article title, Phys. Rev. D, 14, 2460, (1976)
[3] Mathur, SD, No article title, Class. Quant. Grav., 26, 224001, (2009) · Zbl 1181.83129
[4] Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200]
[5] Witten, E., No article title, Adv. Theor. Math. Phys., 2, 253, (1998) · Zbl 0914.53048
[6] Gubser, SS; Klebanov, IR; Polyakov, AM, No article title, Phys. Lett. B, 428, 105, (1998) · Zbl 1355.81126
[7] Lunin, O.; Mathur, SD, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B, 623, 342, (2002) · Zbl 1036.83503
[8] Lunin, O., Maldacena, J.M., Maoz, L.: arXiv:hep-th/0212210
[9] Jejjala, V.; Madden, O.; Ross, SF; Titchener, G., Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D, 71, 124030, (2005)
[10] Balasubramanian, V.; Gimon, EG; Levi, TS, No article title, JHEP, 0801, 056, (2008)
[11] Bena, I.; Warner, NP, No article title, Lect. Notes Phys., 755, 1, (2008) · Zbl 1155.83301
[12] Cardoso, V.; Dias, OJC; Hovdebo, JL; Myers, RC, Instability of non-supersymmetric smooth geometries, Phys. Rev. D, 73, 064031, (2006)
[13] Chowdhury, BD; Mathur, SD, Radiation from the non-extremal fuzzball, Class. Quant. Grav., 25, 135005, (2008) · Zbl 1180.83046
[14] Mathur, S.D.: arXiv:0805.3716 [hep-th]
[15] Mathur, SD, No article title, Int. J. Mod. Phys. D, 18, 2215, (2009) · Zbl 1183.83066
[16] Kraus, P.; Mathur, S D, No article title, Int. J. Mod. Phys. D, 24, 1543003, (2015) · Zbl 1329.83115
[17] Bena, I.; Mayerson, D R; Puhm, A.; Vercnocke, B., No article title, JHEP, 1607, 031, (2016) · Zbl 1390.83175
[18] Almheiri, A.; Marolf, D.; Polchinski, J., No article title, J. Sully and JHEP, 1302, 062, (2013) · Zbl 1342.83121
[19] Mathur, SD, No article title, Int. J. Mod. Phys. D, 25, 1644018, (2016) · Zbl 1351.83060
[20] Buchdahl, HA, No article title, Phys. Rev., 116, 1027, (1959) · Zbl 0092.20802
[21] Sen, A., No article title, JHEP, 9710, 002, (1997)
[22] Witten, E., No article title, Nucl. Phys. B, 195, 481, (1982) · Zbl 0900.53036
[23] Mathur, SD, No article title, Ann. Phys., 327, 2760, (2012) · Zbl 1252.83062
[24] Gibbons, GW; Warner, NP, No article title, Class. Quant. Grav., 31, 025016, (2014) · Zbl 1292.83031
[25] Mathur, SD, No article title, Fortsch. Phys., 53, 793, (2005) · Zbl 1116.83300
[26] Skenderis, K.; Taylor, M., No article title, Phys. Rept., 467, 117, (2008)
[27] Bena, I.; Giusto, S.; Martinec, E J; Russo, R.; Shigemori, M.; Turton, D.; Warner, N P, No article title, Phys. Rev. Lett., 117, 201601, (2016)
[28] Mathur, SD, No article title, Int. J. Mod. Phys. D, 12, 1681, (2003)
[29] Das, SR; Jevicki, A., No article title, Mod. Phys. Lett. A, 5, 1639, (1990) · Zbl 1020.81765
[30] Jevicki, A., No article title, Nucl. Phys. B, 376, 75, (1992)
[31] Polchinski, J.: arXiv:hep-th/9411028
[32] Jevicki, A.: unpublished
[33] Karczmarek, JL; Maldacena, JM; Strominger, A., No article title, JHEP, 0601, 039, (2006)
[34] Das, SR; Mathur, SD, No article title, Phys. Lett. B, 365, 79, (1996)
[35] Garriga, J.; Kanno, S.; Sasaki, M.; Soda, J.; Vilenkin, A., No article title, JCAP, 1212, 006, (2012)
[36] Frob, MB; Garriga, J.; Kanno, S.; Sasaki, M.; Soda, J.; Tanaka, T.; Vilenkin, A., No article title, JCAP, 1404, 009, (2014)
[37] D’Eath, PD; Payne, PN, No article title, Phys. Rev. D, 46, 658, (1992)
[38] Mathur, SD; Turton, D., No article title, Nucl. Phys. B, 884, 566, (2014) · Zbl 1323.83023
[39] Amsel, AJ; Marolf, D.; Virmani, A., No article title, JHEP, 0804, 025, (2008) · Zbl 1246.83092
[40] Hooft, G.’t.: The Holographic principle: opening lecture. arXiv:hep-th/0003004
[41] Susskind, L.; Thorlacius, L.; Uglum, J., The Stretched horizon and black hole complementarity, Phys. Rev. D, 48, 3743-3761, (1993)
[42] Susskind, L., String theory and the principles of black hole complementarity, Phys. Rev. Lett., 71, 2367-2368, (1993) · Zbl 0972.83565
[43] Susskind, L., The World As A Hologram, J. Math. Phys., 36, 6377, (1995) · Zbl 0850.00013
[44] Lowe, DA; Polchinski, J.; Susskind, L.; etal., Black hole complementarity versus locality, Phys. Rev. D, 52, 6997-7010, (1995)
[45] Mathur, SD; Plumberg, CJ, Correlations in Hawking radiation and the infall problem, JHEP, 1109, 093, (2011) · Zbl 1301.81149
[46] Mathur, S.D.: arXiv:1506.04342 [hep-th]
[47] Maldacena, J.; Susskind, L., No article title, Fortsch. Phys., 61, 781, (2013) · Zbl 1338.83057
[48] Papadodimas, K.; Raju, S., No article title, JHEP, 1310, 212, (2013)
[49] Giddings, S.B.: Nonviolent information transfer from black holes: a field theory parameterization arXiv:1302.2613 [hep-th]
[50] Hawking, SW; Perry, MJ; Strominger, A., No article title, Phys. Rev. Lett., 116, 231301, (2016)
[51] Ambjorn, J.; Jurkiewicz, J.; Loll, R., No article title, Phys. Rev. Lett., 93, 131301, (2004)
[52] Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R., No article title, Phys. Rev. Lett., 59, 521, (1987)
[53] Mathur, S.D.: arXiv:1812.11641 [hep-th]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.