×

Modelling of the interaction of unsteady high-intensity turbulence flow with heat- and mass-transfer in the boundary layer on the surface. (English. Russian original) Zbl 1414.76026

Fluid Dyn. 53, No. 6, 774-785 (2018); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2018, No. 6, 55-66 (2018).
Summary: The dynamic and thermal characteristics of unsteady near-wall flows are investigated numerically on the basis of two-parameter turbulence models under conditions of high-turbulence free stream and impact of perturbing heat- and mass-transfer factors in the boundary layer. The effect of mass-transfer parameters considered on the permeable section on the development of dynamic and thermal processes in the steady-state turbulent boundary layer is studied and the boundary layer structure along the surface is investigated. The mutual action of time harmonic oscillations of the velocity of outer inviscid free stream and the heat-transfer parameters on wall on the development of time-dependent heat-transfer characteristics in turbulent flow is analyzed. The numerical results are compared with experimental and theoretical data.

MSC:

76F40 Turbulent boundary layers
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. L. Simpson, R. J. Moffat, and W. M. Kays, “The Turbulent Boundary Layer on a Porous Plate: Experimental Skin Friction with Variable Injection and Suction,” Int. J. Heat Mass Transfer 12 (7), 771-789 (1969). · doi:10.1016/0017-9310(69)90181-1
[2] R. L. Simpson, “The Effect of a Discontinuity in Wall Blowing on the Turbulent Incompressible Boundary Layer,” Int. J. HeatMass Transfer 14 (12), 2083-2097 (1971). · doi:10.1016/0017-9310(71)90029-9
[3] R. L. Simpson, “Characteristics of Turbulent Boundary Layers at Low Reynolds Numbers with and without Transpiration,” J. Fluid Mech. 42 (4), 783-799 (1970). · doi:10.1017/S002211207000160X
[4] Aleksin, V. A.; Sovershennyi, V. D., Numerical Calculation of a Turbulent Boundary Layer with a Sharp Change in the Boundary Conditions (1977), Moscow
[5] V. A. Aleksin, V. D. Sovershennyi, and S. P. Chikova, “Calculation of the Turbulent Boundary Layer at Surfaces with Porous Sections,” Fluid Dynamics 13 (1), 51-57 (1978). · Zbl 0459.76020 · doi:10.1007/BF01094459
[6] P. M. Moretti and W. M. Kays, “Heat Transfer to a Turbulent Boundary-Layer with Varying Freestream Velocity and Varying Surface Temperature, an Experimental Study,” Intern. J. Heat Mass Transfer 8 (9), 1187-1202 (1965). · doi:10.1016/0017-9310(65)90062-1
[7] A. M. Savill (Ed.), Transition Modelling for Turbomachinery II: An Updated Summ. of ERCOFTAC Trans. SIG Progr. 2nd Workshop (Cambridge University Press, Cambridge, 1994).
[8] Epik, E. Ya., Heat Transfer Effects in Transitions, 1-47 (1996), California
[9] Savill, A. M., Evaluation of Turbulent Models for Predicting Transition in Turbomachinery Flows, 3-13 (1995)
[10] S. A. Gaponov and N.M. Terekhova, “Joint Effect of Heat and Mass Transfer on the Compressible Boundary Layer Stability,” Fluid Dynamics 51 (1), 45-55 (2016). · Zbl 1339.76029 · doi:10.1134/S0015462816010063
[11] V. A. Aleksin and S. N. Kazeykin, “Modeling the Effect of Freestream Turbulence on Unsteady Boundary Layer Flow,” Fluid Dynamics 35 (6), 846-857 (2000). · Zbl 1002.76528 · doi:10.1023/A:1004188524485
[12] V. A. Aleksin, “Simulation of the Effect of the Freestream Turbulence Parameters on Heat Transfer in an Unsteady Boundary Layer,” Fluid Dynamics 38 (2), 237-249 (2003). · Zbl 1161.76311 · doi:10.1023/A:1024221102495
[13] Ginevskii, A. S.; Ioselevich, V. A.; Kolesnikov, A. V.; Lapin, Yu. V.; Pilipenko, V. A.; Sekundov, A. N., Methods of Calculating the Turbulent Boundary Layer, 155-304 (1978)
[14] V. C. Patel, W. Rodi, and G. Scheuerer, “TurbulenceModels forNear-Wall and Low Reynolds Number Flows: a Review,” AIAA Journal 23 (9), 1308-1319 (1985). · doi:10.2514/3.9086
[15] W. P. Jones and B. E. Launder, “The Calculation of Low-Reynolds – numberPhenomena with a Two-Equation Model of Turbulence,” Intern. J. Heat and Mass Transfer 16 (6), 1119-1130 (1973). · doi:10.1016/0017-9310(73)90125-7
[16] K.-Y. Chien, “Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model,” AIAA Journal 20 (1), 33-38 (1982). · Zbl 0484.76064 · doi:10.2514/3.51043
[17] B. J. Abu-Ghannam and R. Shaw, “Natural Transition of Boundary Layers—the Effect of Turbulence, Pressure Gradient, and Flow History,” J.Mech. Engng. Sci. 22 (5), 213-228 (1980). · doi:10.1243/JMES_JOUR_1980_022_043_02
[18] V. A. Aleksin, “Simulation of the Effect of High-Intensity Turbulence Flow Parameters on Unsteady Boundary Layers with Streamwise Pressure Gradients,” Fluid Dynamics 43 (2), 274-286 (2008). · Zbl 1210.76089 · doi:10.1134/S0015462808020129
[19] V. A. Aleksin, “Modeling the Freestream Parameter Effect on Unsteady Boundary Layers with Positive Pressure Gradients,” Fluid Dynamics 47 (1), 70-83 (2012). · Zbl 1242.76067 · doi:10.1134/S0015462812010085
[20] V. A. Aleksin and A. M. Kudryakov, “Unsteady Periodic Boundary Layer with Backflow Zones,” Fluid Dynamics 26 (5), 703-711 (1991). · Zbl 0788.76024
[21] J. Cousteix, “Three-Dimensional and Unsteady Boundary-Layer Computations,” Annu. Rev. Fluid Mech. 18, 173-196 (1986). · Zbl 0615.76047 · doi:10.1146/annurev.fl.18.010186.001133
[22] T. Cebeci, “Calculation of Unsteady Two-Dimensional Laminar and Turbulent Boundary Layers with Fluctuations in External Velocity,” Proc. Roy. Soc. London. Ser. A 355 (1681), 225-238 (1977). · Zbl 0361.76051 · doi:10.1098/rspa.1977.0096
[23] S. K. F. Karlsson, “An Unsteady Turbulent Boundary Layer,” J. Fluid Mech. 5 (4), 622-636 (1959). · Zbl 0085.39801 · doi:10.1017/S0022112059000428
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.