×

Trimmed fuzzy clustering for interval-valued data. (English) Zbl 1414.62242

Summary: In this paper, following a partitioning around medoids approach, a fuzzy clustering model for interval-valued data, i.e., FCMd-ID, is introduced. Successively, for avoiding the disruptive effects of possible outlier interval-valued data in the clustering process, a robust fuzzy clustering model with a trimming rule, called Trimmed Fuzzy \(C\)-medoids for interval-valued data (TrFCMd-ID), is proposed. In order to show the good performances of the robust clustering model, a simulation study and two applications are provided.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62G35 Nonparametric robustness
03E72 Theory of fuzzy sets, etc.
62A86 Fuzzy analysis in statistics

Software:

clusfind
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anderson, DT; Bezdek, JC; Popescu, M.; Keller, JM, Comparing fuzzy, probabilistic, and possibilistic partitions, IEEE Trans Fuzzy Syst, 18, 906-918, (2010)
[2] Billard L, Diday E (2006) Symbolic data analysis: conceptual statistics and data mining. Wiley, England · Zbl 1117.62002
[3] Brown, J.; Broderick, AJ; Lee, N., Word of mouth communication within online communities: conceptualizing the online social network, J Interact Mark, 21, 2-20, (2007)
[4] Campello, RJGB, A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment, Pattern Recognit Lett, 28, 833-841, (2007)
[5] Campello, RJGB; Hruschka, ER, A fuzzy extension of the silhouette width criterion for cluster analysis, Fuzzy Sets Syst, 157, 2858-2875, (2006) · Zbl 1103.68674
[6] Carvalho, FdAT, Fuzzy \(c\)-means clustering methods for symbolic interval data, Pattern Recognit Lett, 28, 423-437, (2007)
[7] Carvalho, FdAT; Tenório, CP, Fuzzy \(k\)-means clustering algorithms for interval-valued data based on adaptive quadratic distances, Fuzzy Sets Syst, 161, 2978-2999, (2010) · Zbl 1204.62106
[8] Carvalho, FdAT; Csernel, M.; Lechevallier, Y., Clustering constrained symbolic data, Pattern Recognit Lett, 30, 1037-1045, (2009)
[9] Souza, RMCR; Carvalho, FdAT, Clustering of interval data based on city-block distances, Pattern Recognit Lett, 25, 353-365, (2004)
[10] Cazes, P.; Chouakria, A.; Diday, E.; Schektrman, Y., Entension de l’analyse en composantes principales à des données de type intervalle, Revue Stat Appl, 45, 5-24, (1997)
[11] Coppi, R.; D’Urso, P.; Giordani, P., Fuzzy and possibilistic clustering for fuzzy data, Comput Stat Data Anal, 56, 915-927, (2012) · Zbl 1243.62089
[12] D’Urso, P.; Giovanni, L., Midpoint radius self-organizing maps for interval-valued data with telecommunications application, Appl Soft Comput, 11, 3877-3886, (2011)
[13] D’Urso, P.; Giordani, P., A least squares approach to principal component analysis for interval valued data, Chemom Intell Lab Syst, 70, 179-192, (2004)
[14] D’Urso, P.; Giordani, P., A weighted fuzzy \(c\)-means clustering model for fuzzy data, Comput Stat Data Anal, 50, 1496-1523, (2006) · Zbl 1445.62157
[15] D’Urso, P.; Giordani, P., A robust fuzzy k-means clustering model for interval valued data, Comput Stat, 21, 251-269, (2006) · Zbl 1113.62076
[16] D’Urso, P.; Giovanni, L.; Massari, R., Self-organizing maps for imprecise data, Fuzzy Sets Syst, 237, 63-89, (2014) · Zbl 1315.68206
[17] El-Sonbaty, Y.; Ismail, MA, Fuzzy clustering for symbolic data, IEEE Trans Fuzzy Syst, 6, 195-204, (1998)
[18] Everitt BS, Landau S, Leese M (2001) Cluster analysis, 4th edn. Arnold Press, London · Zbl 1205.62076
[19] Fu KS (1977) Syntactic pattern recognition, applications. Springer, New York · Zbl 0356.68096
[20] García-Escudero, LA; Gordaliza, A., Robustness properties of k-means and trimmed k-means, J Am Stat Assoc, 94, 956-969, (1999) · Zbl 1072.62547
[21] García-Escudero, LA; Gordaliza, A., A proposal for robust curve clustering, J Classif, 22, 185-201, (2005) · Zbl 1336.62179
[22] García-Escudero, LA; Gordaliza, A.; Matrán, C.; Mayo-Iscar, A., A review of robust clustering methods, Adv Data Anal Classif, 4, 89-109, (2010) · Zbl 1284.62375
[23] Gowda, K.; Ravi, T., Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity, Pattern Recognit Lett, 16, 647-652, (1995)
[24] Guru, DS; Kiranagi, BB; Nagabhushan, P., Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns, Pattern Recognit Lett, 25, 1203-1213, (2004)
[25] Heiser, WJ; Groenen, PJF, Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima, Psychometrika, 62, 63-83, (1997) · Zbl 0889.92037
[26] Ichino, M.; Yaguchi, H., Generalized Minkowski metrics for mixed feature-type data analysis, IEEE Trans Syst Man Cybern, 24, 698-708, (1994) · Zbl 1371.68235
[27] Jeng, JT; Chuang, CC; Tseng, CC; Juan, CJ, Robust interval competitive agglomeration clustering algorithm with outliers, Int J Fuzzy Syst, 12, 227-236, (2010)
[28] Kamdar T, Joshi A (2000) On creating adaptive Web servers using Weblog Mining. Technical Report TR-CS-00-05, Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County
[29] Katona, Z.; Zubcsek, PP; Sarvary, M., Network effects and personal influences: the diffusion of an online social network, J Mark Res, 48, 425-443, (2011)
[30] Kaufman, L.; Rousseeuw, PJ; Dodge, Y. (ed.), Clustering by means of medoids, 405-416, (1987), Amsterdam
[31] Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York · Zbl 1345.62009
[32] Kim, J.; Krishnapuram, R.; Davé, R., Application of the least trimmed squares technique to prototype-based clustering, Pattern Recognit Lett, 17, 633-641, (1996)
[33] Kohonen T (1989) Self-organization and associative memory, 3rd edn. Springer, New York · Zbl 0528.68062
[34] Krishnapuram R, Joshi A, Yi L (1999) A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering. In: IEEE international fuzzy systems conference (FUZZIEEE99), vol 3, IEEE, Seoul, pp 1281-1286
[35] Krishnapuram, R.; Joshi, A.; Nasraoui, O.; Yi, L., Low-complexity fuzzy relational clustering algorithms for web mining, IEEE Trans Fuzzy Syst, 9, 595-607, (2001)
[36] Masson, MH; Denœux, T., Clustering interval-valued proximity data using belief functions, Pattern Recognit Lett, 25, 163-171, (2004)
[37] McBratney, AB; Moore, AW, Application of fuzzy sets to climatic classification, Agric For Meteorol, 35, 165-185, (1985)
[38] Palmer, A.; Koenig-Lewis, N., An experiential, social network-based approach to direct marketing, Direct Mark Int J, 3, 162-176, (2009)
[39] Qualman E (2012) Socialnomics: How social media transforms the way we live and do business. Wiley, New Jersey
[40] Runkler, T.; Bezdek, J., Alternating cluster estimation: a new tool for clustering and function approximation, IEEE Trans Fuzzy Syst, 7, 377-393, (1999)
[41] Vinod, HD, Integer programming and the theory of grouping, J Am Stat Assoc, 64, 506-519, (1969) · Zbl 0272.90050
[42] Webb Young J, Burgoyne B (2009) You’ve got a friend: measuring the value of brand friending on social networks. In: Market research study annual conference, Market Research Study
[43] Wedel M, Kamakura WA (1998) Market segmentation: conceptual and methodological foundations. Kluwer Academic, Boston
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.