×

zbMATH — the first resource for mathematics

Acceleration and global convergence of a first-order primal-dual method for nonconvex problems. (English) Zbl 1414.49037

MSC:
49M29 Numerical methods involving duality
49J53 Set-valued and variational analysis
49N45 Inverse problems in optimal control
Software:
iPiano
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M. Bachmayr and M. Burger, Iterative total variation schemes for nonlinear inverse problems, Inverse Problems, 25 (2009), 105004, . · Zbl 1188.49028
[2] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed., CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2017, . · Zbl 1359.26003
[3] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 2419–2434, . · Zbl 1371.94049
[4] M. Benning, F. Knoll, C.-B. Schönlieb, and T. Valkonen, Preconditioned ADMM with nonlinear operator constraint, in System Modeling and Optimization, CSMO 2015, L. Bociu, J.-A. Désidéri, and A. Habbal, eds., IFIP Adv. Inf. Commun. Technol. 494, Springer, Cham, 2016, pp. 117–126, .
[5] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), pp. 492–526, . · Zbl 1195.49025
[6] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z., 100 (1967), pp. 201–225, . · Zbl 0149.36301
[7] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), pp. 167–188, . · Zbl 0874.68299
[8] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145, . · Zbl 1255.68217
[9] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal–dual algorithm, Math. Program., 159 (2016), pp. 253–287, . · Zbl 1350.49035
[10] C. Clason, Clason/nlpdegm: Accepted version, March 2017, .
[11] C. Clason and T. Valkonen, Primal-dual extragradient methods for nonlinear nonsmooth PDE-constrained optimization, SIAM J. Optim., 27 (2017), pp. 1313–1339, . · Zbl 1369.49040
[12] E. Esser, X. Zhang, and T. F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), pp. 1015–1046, . · Zbl 1206.90117
[13] A. Kröner and B. Vexler, A priori error estimates for elliptic optimal control problems with a bilinear state equation, J. Comput. Appl. Math., 230 (2009), pp. 781–802, . · Zbl 1178.65071
[14] T. Möllenhoff, E. Strekalovskiy, M. Moeller, and D. Cremers, The primal-dual hybrid gradient method for semiconvex splittings, SIAM J. Imaging Sci., 8 (2015), pp. 827–857, . · Zbl 1328.68278
[15] P. Ochs, Y. Chen, T. Brox, and T. Pock, iPiano: Inertial proximal algorithm for nonconvex optimization, SIAM J. Imaging Sci., 7 (2014), pp. 1388–1419, . · Zbl 1296.90094
[16] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), pp. 591–597, . · Zbl 0179.19902
[17] T. Pock, D. Cremers, H. Bischof, and A. Chambolle, An algorithm for minimizing the Mumford–Shah functional, in Proceedings of the 12th International Conference on Computer Vision, IEEE Press, Piscataway, NJ, 2009, pp. 1133–1140, .
[18] T. Pock and S. Sabach, Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems, SIAM J. Imaging Sci., 9 (2016), pp. 1756–1787, . · Zbl 1358.90109
[19] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Optim., 14 (1976), pp. 877–898, . · Zbl 0358.90053
[20] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer, Berlin, 1998, .
[21] M. Ulbrich and S. Ulbrich, Non-monotone trust region methods for nonlinear equality constrained optimization without a penalty function, Math. Program., 95 (2003), pp. 103–135, . · Zbl 1030.90123
[22] T. Valkonen, A primal–dual hybrid gradient method for non-linear operators with applications to MRI, Inverse Problems, 30 (2014), 055012, . · Zbl 1310.47081
[23] T. Valkonen, Preconditioned Proximal Point Methods and Notions of Partial Subregularity, preprint, 2017, .
[24] T. Valkonen, Testing and non-linear preconditioning of the proximal point method, Appl. Math. Optim. (2018), .
[25] T. Valkonen, Block-proximal methods with spatially adapted acceleration, Electron. Trans. Numer. Anal. 51 (2019), pp. 15–49, .
[26] Y. Wang, W. Yin, and J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput., 78 (2018), pp. 29–63, . · Zbl 07042437
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.