The lattice of congruence lattices of algebras on a finite set. (English) Zbl 1414.08001

The congruence lattices of all algebras defined on a fixed finite set \(A\) ordered by inclusion form a finite atomistic lattice \(E\). The authors describe the atoms, coatoms and irreducible elements of the lattice \(E\). It is proved that the lattice \(E\) is tolerance-simple, whenever the set \(A\) has at least four elements.


08A30 Subalgebras, congruence relations
06B15 Representation theory of lattices
08A60 Unary algebras
06A15 Galois correspondences, closure operators (in relation to ordered sets)
08A35 Automorphisms and endomorphisms of algebraic structures
20M20 Semigroups of transformations, relations, partitions, etc.
Full Text: DOI arXiv


[1] Grätzer, G; Schmidt, ET, Characterizations of congruence lattices of abstract algebras, Acta Sci. Math. (Szeged), 24, 34-59, (1963) · Zbl 0117.26101
[2] Jakubíková-Studenovská, D, Lattice of quasiorders of monounary algebras, Miskolc Math. Notes, 10, 41-48, (2009) · Zbl 1199.08006
[3] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras. P.J. Šafárik Univ, Košice (2009) · Zbl 1181.08001
[4] Jakubíková-Studenovská, D; Pöschel, R; Radeleczki, S, The lattice of compatible quasiorders of acyclic monounary algebras, Order, 28, 481-497, (2011) · Zbl 1233.08005
[5] Jakubíková-Studenovská, D; Pöschel, R; Radeleczki, S, Irreducible quasiorders of monounary algebras, J. Aust. Math. Soc., 93, 259-276, (2013) · Zbl 1282.08004
[6] Jakubíková-Studenovská, D; Pöschel, R; Radeleczki, S, The lattice of quasiorder lattices of algebras on a finite set, Algebra Universalis, 75, 197-220, (2016) · Zbl 1338.08005
[7] Janowitz, M, Tolerances, interval orders, and semiorders, Czechoslov. Math. J., 44, 21-38, (1994) · Zbl 0809.06001
[8] Janowitz, MF; Radeleczki, S, Aggregation on a finite lattice, Order, 33, 371-388, (2016) · Zbl 1403.06007
[9] Kindermann, M.: Über die Äquivalenz von Ordnungspolynomvollständigkeit und Toleranzeinfachheit endlicher Verbände. In: Contributions to general algebra (Proc. Klagenfurt Conf., Klagenfurt, 1978), pp. 145-149. Heyn, Klagenfurt (1979) · Zbl 1233.08005
[10] Pöschel, R.: Galois connections for operations and relations. In: Denecke, K., Erné, M., Wismath, S. (eds.) Galois connections and applications. Mathematics and its Applications, vol. 565, pp. 231-258. Kluwer, Dordrecht (2004) · Zbl 1063.08003
[11] Pöschel, R., Kalužnin, L.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin (1979). Birkhäuser Verlag Basel. Math. Reihe 67, (1979) · Zbl 1199.08006
[12] Pöschel, R., Radeleczki, S.: Endomorphisms of quasiorders and related lattices. In: Dorfer, G., Eigenthaler, G., Kautschitsch, H., More, W., Müller, W. (eds.) Contributions to General Algebra 18 (Proceedings of the Klagenfurt Conference 2007 (AAA73+CYA22), Febr. 2007), pp. 113-128. Verlag Heyn GmbH and Co KG (2008) · Zbl 0117.26101
[13] Radeleczki, S; Schweigert, D, Notes on locally order-polynomially complete lattices, Algebra Universalis, 53, 397-399, (2005) · Zbl 1109.06005
[14] Werner, H.: Which partition lattices are congruence lattices? In: Lattice theory (Proc. Colloq., Szeged, 1974), Colloq. Math. Soc. János Bolyai, vol. 14, pp. 433-453. North-Holland, Amsterdam (1976) · Zbl 1109.06005
[15] Zádori, L.: Generation of finite partition lattices. In: Lectures in universal algebra (Szeged, 1983), Colloq. Math. Soc. János Bolyai, vol. 43, pp. 573-586. North-Holland, Amsterdam (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.