×

zbMATH — the first resource for mathematics

Classification and construction of quaternary self-dual bent functions. (English) Zbl 1412.94257
Summary: Quaternary self-dual bent functions are studied from the viewpoints of existence, construction, and symmetry. A search algorithm is described to classify their orbits under the orthogonal group in low dimensions. A connection with self-dual bent Boolean functions shows that they do not exist in odd number of variables.

MSC:
94C10 Switching theory, application of Boolean algebra; Boolean functions (MSC2010)
06E30 Boolean functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Carlet, C.: Boolean functions for cryptography and error correcting codes, chapter in Boolean methods and models. In: Hammer, P., Crama, Y. (eds.) . to appear. Cambridge University Press · Zbl 1209.94035
[2] Carlet, C.: On the secondary constructions of resilient and bent functions, Proceedings of the Workshop on Coding, Cryptography and Combinatorics 2003. In: Feng, K., Niederreiter, H., Xing, C. (eds.) , pp 3-28. Progress in Computer Science and Application Logic, Birkhäuser Verlag (2004) · Zbl 1062.94036
[3] Chase, P.J., Dillon, J.F., Lerche, K.D.: Bent functions and difference sets. R41 Technical Paper (1971)
[4] Carlet, C; Danielsen, LE; Parker, MG; Solé, P, Self dual bent functions, Int. J. Inf. Coding Theory, 1, 384-399, (2010) · Zbl 1204.94118
[5] Davis, JA; Jedwab, J, Peak-to-mean power control in OFDM, golay complementary sequences, and Reed-muller codes, IEEE Trans. Inf. Theory, 45, 2397-2417, (1999) · Zbl 0960.94012
[6] Danielsen, LE; Parker, MG; Solé, P, Self dual bent functions, Springer Lect. Notes Comput. Sci., LNCS, 5921, 418-432, (2009) · Zbl 1234.06010
[7] Hammons, ARJr; Kumar, PV; Calderbank, AR; Sloane, NJA; Solé, P, The \(\mathbb{Z}_{4}\)ℤ4-linearity of kerdock, preparata, goethals and related codes, IEEE Trans. Inf. Theory, 40, 301-319, (1994) · Zbl 0811.94039
[8] Janusz, GJ, Parametrization of self-dual codes by orthogonal matrices, Finite Fields Appl., 13, 450-491, (2007) · Zbl 1138.94389
[9] Langevin, P; Leander, G, Counting all bent functions in dimension eight 99270589265934370305785861242880, Des. Codes Cryptogr., 59, 193-205, (2011) · Zbl 1215.94059
[10] Li, N., Tang, X., Helleseth, T.: New classes of generalized Boolean functions over \(\mathbb{Z}_{4}\), Proceedings of ISIT 2012, pp. 841-845
[11] Li, N; Tang, X; Helleseth, T, New constructions of quadratic bent functions in polynomial form, IEEE Trans. Inf. Theory, 60, 5760-5767, (2014) · Zbl 1360.94479
[12] Martinsen, T., Meidl, W., Stanica, P.: Partial spread and vectorial generalized bent functions, arxiv (2015) · Zbl 1408.94997
[13] Schmidt, K-U, Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Inf. Theory, 55, 1824-1832, (2009) · Zbl 1367.94344
[14] Solé, P., Tokareva, N.: Connections between quaternary and binary bent functions // Cryptology ePrint Archive, Report 2009/544. http://eprint.iacr.org(eng)
[15] Stanica, P; Martinsen, T; Gangopadhyay, S; Singh, BK, Bent and generalized bent functions, Des. Codes Crypto., 69, 77-94, (2013) · Zbl 1322.94094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.