×

Practical analysis of continuous-variable quantum key distribution using a nondeterministic noiseless linear amplifier. (English) Zbl 1412.81117

Summary: We study the impact of the imperfections and the finite-size effect on the continuous-variable quantum key distribution (CVQKD) protocol with the nondeterministic noiseless linear amplifier (NLA). The imperfections of the homodyne detector and the imperfect amplification process as well as the finite-size effect on parameter estimation procedure are considered. We can see that despite the imperfections of the homodyne detector, the maximum improved transmission distance can still reach the equivalence of \(20\log_{10}g\) dB losses theoretically. Moreover, the analysis shows the imperfect amplification process of the NLA will slightly decrease the performance of the system. And we find the finite-size effect significantly influence the secret key rates of the NLA CVQKD protocol and the performance will approach the ideal asymptotic case with the increase of block size.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
81P70 Quantum coding (general)
81P15 Quantum measurement theory, state operations, state preparations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[2] Scarani, V., Bechmannpasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301-1350 (2009) · doi:10.1103/RevModPhys.81.1301
[3] Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387 (2011) · doi:10.1364/OE.19.010387
[4] Fossier, S., Diamanti, E., Debuisschert, T., Villing, A., Tualle-Brouri, R., Grangier, P.: Field test of a continuous-variable quantum key distribution prototype. J. Phys. 11(4), 045023 (2009)
[5] Schmitt-Manderbach, T., Weier, H., Frst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. In: European Conference on Lasers and Electro-Optics, 2007 and the International Quantum Electronics Conference, pp. 1-1. Cleoe-Iqec (2007)
[6] Tokunaga, S., Shirasaki, K., Hirano, T.: Free-space continuous-variable quantum cryptography. In: European Conference on Lasers and Electro-Optics, 2007 and the International Quantum Electronics Conference, pp. 1-1. Cleoe-Iqec (2007)
[7] Weedbrook, C., Pirandola, S., Garca-Patrn, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Modern Phys. 84 (2), 621-669 (2012) · doi:10.1103/RevModPhys.84.621
[8] Jouguet, P., Kunz-Jacques, S., Debuisschert, T., Fossier, S., Diamanti, E., Allaume, R., Tualle-Brouri, R., Grangier, P., Leverrier, A., Pache, P.: Field test of classical symmetric encryption with continuous variables quantum key distribution. Opt. Express 20(13), 14030 (2012) · doi:10.1364/OE.20.014030
[9] Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421 (6920), 238-41 (2003) · doi:10.1038/nature01289
[10] Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 96(2), 441 (2000) · doi:10.1103/PhysRevLett.85.441
[11] Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95(8), 080501 (2005) · doi:10.1103/PhysRevLett.95.080501
[12] Zhao, Y., Lo, H.K., Ma, X., Qi, B., Chen, K., Qian, L.: Decoy state quantum key distribution: Theory and practice. In: 2007 APS March Meeting (2007)
[13] Jouguet, P., Kunzjacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7(5), 378-381 (2013) · doi:10.1038/nphoton.2013.63
[14] Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016) · doi:10.1038/srep19201
[15] Zhou, N.R., Li, J.F., Yu, Z.B., Farouk, A., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process 16(1), 1-16 (2017) · Zbl 1373.81193 · doi:10.1007/s11128-016-1481-y
[16] Gong, L.H., Song, H.C., He, C.S., Liu, Y., Zhou, N.R.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Physica Scripta 89(89), 035101 (2014) · doi:10.1088/0031-8949/89/03/035101
[17] Navascus, M., Grosshans, F., Acn, A.: Optimality of gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97(19), 190502 (2006) · doi:10.1103/PhysRevLett.97.190502
[18] Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101(20), 200504 (2008) · doi:10.1103/PhysRevLett.101.200504
[19] Fossier, S.; Diamanti, E.; Debuisschert, T.; Tuallebrouri, R.; Grangier, P., No article title, Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers, 42, 114014 (2009)
[20] Lo, H.K., Ltkenhaus, N.: Quantum cryptography: From theory to practice. Physics (2007)
[21] Caves, C.M., Combes, J., Zhang, J., Pandey, S.: Quantum limits on phase-preserving linear amplifiers. Phys. Rev. A 86(6), 3711-3719 (2013)
[22] Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photon. 9(6), 397-402 (2015) · doi:10.1038/nphoton.2015.83
[23] Ma, XC; Sun, SH; Jiang, MS; Gui, M.; Liang, LM, No article title, Gaussian-modulated coherent-state measurement-device-independent quantum key distribution, 89, 4089-4091 (2013)
[24] Li, Z., Zhang, Y., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014) · doi:10.1103/PhysRevA.89.052301
[25] Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems, pp. 155-160 (2009) · Zbl 1191.81034
[26] Ferreyrol, F., Barbieri, M., Blandino, R., Tuallebrouri, R., Grangier, P.: Implementation of a non-deterministic optical noiseless amplifier. Phys. Rev. Lett. 104 (12), 123603 (2010) · doi:10.1103/PhysRevLett.104.123603
[27] Ferreyrol, F., Blandino, R., Barbieri, M., Tuallebrouri, R., Grangier, P.: Experimental realization of a nondeterministic optical noiseless amplifier. Phys. Rev. A 83(6), 225-228 (2011) · doi:10.1103/PhysRevA.83.063801
[28] Wang, T., Yu, S., Zhang, Y.C., Gu, W., Guo, H.: Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Lett. A 378(38C39), 2808-2812 (2014) · Zbl 1298.81060 · doi:10.1016/j.physleta.2014.08.005
[29] Li, C., Miao, R., Gong, X., Guo, Y., He, G.: Performance improvement of two-way quantum key distribution by using a heralded noiseless amplifier. Int. J. Theor. Phys. 55(4), 2199-2211 (2016) · Zbl 1338.81167 · doi:10.1007/s10773-015-2859-9
[30] Bai, D., Huang, P., Ma, H., Wang, T., Zeng, G.: Performance improvement of plug-and-play dual-phase-modulated quantum key distribution by using a noiseless amplifier. Entropy 19(10), 546 (2017) · doi:10.3390/e19100546
[31] Xu, B., Tang, C., Chen, H., Zhang, W., Zhu, F.: Improve the maximum transmission distance of four-state continuous variable quantum key distribution by using a noiseless linear amplifier. Phys. Rev. A 86(1), 113-115 (2012)
[32] Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., Tuallebrouri, R.: Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86(1), 012327 (2012) · doi:10.1103/PhysRevA.86.012327
[33] Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 36-43 (2010)
[34] Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501 (2008) · doi:10.1103/PhysRevLett.100.200501
[35] Fiuršek, J, Cerf, N.J.: Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution. Phys. Rev. A 86(86), 12510-12517 (2012)
[36] Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002) · doi:10.1103/PhysRevLett.88.057902
[37] Holevo, A.S., Sohma, M., Hirota, O.: Capacity of quantum gaussian channels. Phys. Rev. A 59(59), 1820-1828 (1999) · doi:10.1103/PhysRevA.59.1820
[38] Garcapatrn, R., Cerf, N.J.: Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 102(13), 130501 (2009) · doi:10.1103/PhysRevLett.102.130501
[39] Wang, M.J., Pan, W.: Improvement of two-way continuous variable quantum cryptography by using additional noise. Phys. Lett. A 374(24), 2434-2437 (2010) · Zbl 1237.81067 · doi:10.1016/j.physleta.2010.04.006
[40] Jouguet, P., Kunzjacques, S., Diamanti, E., Leverrier, A.: Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 86(3), 6429-6440 (2012) · doi:10.1103/PhysRevA.86.032309
[41] Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: Finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012) · doi:10.1103/PhysRevLett.109.100502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.