×

Sufficient optimality conditions for optimal control problems with state constraints. (English) Zbl 1412.49050

Summary: It is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions.

MSC:

49K21 Optimality conditions for problems involving relations other than differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bellman, R., Bottleneck problems and dynamic programming, Proc. Natl. Acad. Sci. USA, 39, 9, 947-951 (1953) · Zbl 0053.27903 · doi:10.1073/pnas.39.9.947
[2] Bellman, R., Dynamic Programming (1957), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0077.13605
[3] Berkovitz, L. D., Optimal feedback controls, SIAM J. Control Optim, 27, 5, 991-1006 (1989) · Zbl 0684.49008 · doi:10.1137/0327053
[4] Rowland, J. D. L.; Vinter, R. B., Construction of optimal feedback controls, Syst. Control Lett, 16, 5, 357-367 (1991) · Zbl 0736.49020 · doi:10.1016/0167-6911(91)90057-L
[5] Krotov, V. F., Global Methods in Optimal Control Theory. Monographs and Textbooks in Pure and Applied Mathematics (1996), New York, NY: Marcel Dekker, Inc, New York, NY · Zbl 1075.49500
[6] Lee, E. B.; Markus, L., Foundations of Optimal Control Theory (1986), Melbourne, FL: Robert E. Krieger Publishing Co., Inc, Melbourne, FL
[7] Leitmann, G., The Calculus of Variations and Optimal Control (1981), New York: Plenum Press, New York · Zbl 0475.49003
[8] Boltyanskiĭ, V. G.; Gamkrelidze, R. V.; Pontryagin, L. S., On the theory of optimal processes, Dokl. Akad. Nauk SSSR (N.S.), 110, 7-10 (1956) · Zbl 0071.18203
[9] Pesch, H. J.; Plail, M., The cold war and the maximum principle of optimal control, Doc. Math, 331-343 (2012) · Zbl 1266.01023
[10] Artstein, Z., Pontryagin maximum principle revisited with feedbacks, Eur. J. Control, 17, 1, 46-54 (2011) · Zbl 1248.49022 · doi:10.3166/ejc.17.46-54
[11] Arana-Jiménez, M.; Hernández-Jiménez, B.; Ruiz-Garzón, G.; Rufián-Lizana, A., FJ-invex control problem, Appl. Math. Lett, 22, 12, 1887-1891 (2009) · Zbl 1181.49020 · doi:10.1016/j.aml.2009.07.016
[12] Arana-Jiménez, M.; Osuna-Gómez, R.; Rufián-Lizana, A.; Ruiz-Garzón, G., KT-invex control problem, Appl. Math. Comp, 197, 2, 489-496 (2008) · Zbl 1152.49018 · doi:10.1016/j.amc.2007.07.064
[13] De Oliveira, V. A.; Silva, G. N., New optimality conditions for nonsmooth control problems, J. Glob. Optim, 57, 4, 1465-1484 (2013) · Zbl 1277.49030 · doi:10.1007/s10898-012-0003-4
[14] De Oliveira, V. A.; Silva, G. N., On sufficient optimality conditions for multiobjective control problems, J. Glob. Optim, 64, 4, 721-744 (2016) · Zbl 1337.49032 · doi:10.1007/s10898-015-0351-y
[15] De Oliveira, V. A.; Silva, G. N.; Rojas-Medar, M. A., A class of multiobjective control problems, Optim. Control Appl. Meth, 30, 1, 77-86 (2009) · doi:10.1002/oca.863
[16] De Oliveira, V. A.; Silva, G. N.; Rojas-Medar, M. A., KT-invexity in optimal control problems, Nonlinear Anal. Theor. Methods Appl, 71, 10, 4790-4797 (2009) · Zbl 1169.49017 · doi:10.1016/j.na.2009.03.055
[17] Vivanco-Orellana, V.; Osuna-Gómez, R.; Hernández-Jiménez, B.; Rojas-Medar, M. A., Optimality conditions for nonregular optimal control problems and duality, Numer. Funct. Anal. Optim, 39, 3, 361-382 (2018) · Zbl 1392.49027 · doi:10.1080/01630563.2017.1367694
[18] Martin, D. H., The essence of invexity, J. Optim. Theor. Appl, 47, 1, 65-76 (1985) · Zbl 0552.90077 · doi:10.1007/BF00941316
[19] Craven, B. D.; Glover, B. M., Invex functions and duality, J. Aust. Math. Soc, 39, 1, 1-20 (1985) · Zbl 0565.90064 · doi:10.1017/S1446788700022126
[20] Dinuzzo, F., Ong, C. S., Gehler, P., Pillonetto, G. (2011). Learning output kernels with block coordinate descent. Paper presented at the Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, June 28, 2011-July 2, 2011, pp. 49-56.
[21] Kenan, Z., Lok, T. M. (2010). Optimal power allocation for relayed transmission through a mobile relay node. Paper presented at the IEEE Vehicular Technology Conference, Taipei, Taiwan, May 16-19.
[22] Kenan, Z.; Lok, T. M., Power control for uplink transmission with mobile users, IEEE Trans. Veh. Technol, 60, 5, 2117-2127 (2011) · doi:10.1109/TVT.2011.2151217
[23] Nickisch, H.; Seeger, M. (2011)
[24] Syed, M.; Pardalos, P.; Principe, J., Invexity of the minimum error entropy criterion, IEEE Signal Process. Lett, 20, 12, 1159-1162 (2013) · doi:10.1109/LSP.2013.2283425
[25] Clarke, F. H., Optimization and Nonsmooth Analysis, Volume 5 of Classics in Applied Mathematics (1990), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0696.49002
[26] Mordukhovich, B. S., Variational Analysis and Generalized Differentiation I. Basic Theory, Volume 330 of Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2006), Berlin, Germany: Springer-Verlag, Berlin, Germany
[27] Vinter, R. B., Optimal Control (2000), Boston, MA: Birkhäuser, Boston, MA · Zbl 0967.49017
[28] Clarke, F. H.; Ledyaev, Y. S.; Stern, R. J.; Wolenski, P. R., Nonsmooth Analysis and Control Theory, Volume 178 of Graduate Texts in Mathematics (1998), New York, NY: Springer, New York, NY · Zbl 1047.49500
[29] Mordukhovich, B. S., Variational Analysis and Generalized Differentiation II. Applications, Volume 331 of Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2006), Berlin, Germany: Springer-Verlag, Berlin, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.