×

zbMATH — the first resource for mathematics

A novel adaptive robust control approach for underactuated mobile robot. (English) Zbl 1411.93099
Summary: Underactuated mobile robot (UMR) is a typical nonlinear underactuated system with nonholonomic and holonomic constraints. Based on the model of UMR, we propose a novel adaptive robust control to control the UMR and compensate the uncertainties from the view of constraint-following. The uncertainties, which are (possibly fast) time-varying and bounded, include modeling error, initial condition deviation, friction force and other external disturbances. However, the bounds are unknown. To estimate the bounds of the uncertainties, we design an adaptive law which is of leakage type. The uniform boundedness and the uniform ultimate boundedness of the proposed control are verified by Lyapunov method. Furthermore, the effectiveness of the control is shown via numerical simulation of a case.

MSC:
93C40 Adaptive control/observation systems
93B35 Sensitivity (robustness)
93C85 Automated systems (robots, etc.) in control theory
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babazadeh, R.; Khiabani, A. G.; Azmi, H., Optimal control of Segway personal transporter, Proceedings of the International Conference on Control, Instrumentation, and Automation, 18-22, (2016)
[2] B. D. Inc, Boston Dynamics Home Page, 2017, (https://www.bostondynamics.com/handle).
[3] Cui, R.; Guo, J.; Mao, Z., Adaptive backstepping control of wheeled inverted pendulums models, Nonlinear Dyn., 79, 1, 501-511, (2014) · Zbl 1331.93108
[4] Yih, C. C., Sliding-mode velocity control of a two-wheeled self-balancing vehicle, Asian J. Control, 16, 6, 1880-1890, (2015) · Zbl 1307.93107
[5] Yan, X. G.; Spurgeon, S. K.; Mao, Z.; Mu, J., Nonlinear sliding mode control of a two-wheeled mobile robot system, Int. J. Model. Identif. Control, 27, 2, 75, (2016)
[6] Unluturk, A.; Aydogdu, O., Adaptive control of two-wheeled mobile balance robot capable to adapt different surfaces using a novel artificial neural network-based real-time switching dynamic controller, Int. J. Adv. Robot. Syst., 14, 2, (2017)
[7] Udwadia, F. E., A new perspective on the tracking control of nonlinear structural and mechanical systems, Proc. Math. Phys. Eng. Sci., 459, 2035, 1783-1800, (2003) · Zbl 1046.70016
[8] Udwadia, F. E.; Kalaba, R. E., A new perspective on constrained motion, Proc. Math. Phys. Sci., 439, 1906, 407-410, (1992) · Zbl 0766.70011
[9] Koganti, P. B.; Udwadia, F. E., Unified approach to modeling and control of rigid multibody systems, J. Guid. Control Dyn., 39, 12, 1-16, (2016)
[10] Sun, H.; Zhao, H.; Huang, K.; Qiu, M.; Zhen, S.; Chen, Y.-H., A fuzzy approach for optimal robust control design of an automotive electronic throttle system, IEEE Trans. Fuzzy Syst., 26, 2, 694-704, (2018)
[11] Yao, J.; Deng, W., Active disturbance rejection adaptive control of hydraulic servo systems, IEEE Trans. Ind. Electron., PP, 99, (2017)
[12] Zhen, S.; Zhao, H.; Huang, K.; Deng, B.; Chen, Y.-H., A novel optimal robust control design of fuzzy mechanical systems, IEEE Trans. Fuzzy Syst., 23, 6, 2012-2023, (2015)
[13] Yao, J.; Deng, W., Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application, Nonlinear Dyn., 89, 6, 1-14, (2017)
[14] Sun, W.; Berg, J. V.D.; Alterovitz, R., Stochastic extended LQR for optimization-based motion planning under uncertainty, IEEE Trans. Autom. Sci. Eng., 13, 2, 437-447, (2016)
[15] Zhang, W.; Huang, Y.; Xie, L., Infinite horizon stochastic H_2/H_∞ control for discrete-time systems with state and disturbance dependent noise., Discrete Dyn. Nature Soc., 44, 9, 2306-2316, (2017) · Zbl 1153.93030
[16] Chen, Y.-H., Approximate constraint-following of mechanical systems under uncertainty, Nonlinear Dyn. Syst. Theory, 8, 4, 329-337, (2008) · Zbl 1160.70012
[17] Zhen, S.; Huang, K.; Sun, H.; Zhao, H.; Chen, Y.-H., Dynamic modeling and optimal robust approximate constraint-following control of constrained mechanical systems under uncertainty: a fuzzy approach, J. Intell. Fuzzy Syst., 29, 2, 777-789, (2015) · Zbl 1352.70059
[18] Chen, Y.-H., Artificial swarm system: boundedness, convergence, and control, J. Aerosp. Eng., 21, 4, 288-293, (2008)
[19] Sun, H.; Chen, Y.-H.; Zhao, H., Adaptive robust control methodology for active roll control system with uncertainty, Nonlinear Dyn., 92, 2, 1-13, (2018)
[20] Huang, Q.; Chen, Y.-H.; Cheng, A., Adaptive robust control for fuzzy mechanical systems: Constraint-following and redundancy in constraints, IEEE Trans. Fuzzy Syst., 23, 4, 1113-1126, (2015)
[21] Rosenberg, R. M.; Schmitendorf, W. E., Analytical dynamics of discrete systems, J. Appl. Mech., 45, 1, 233, (1977)
[22] Pars, L. A., A Treatise on Analytical Dynamics, (1965), Heinemann · Zbl 0125.12004
[23] Chen, Y.-H.; Zhang, X., Adaptive robust approximate constraint-following control for mechanical systems, J. Frankl. Inst., 347, 1, 69-86, (2010) · Zbl 1298.93200
[24] Sun, H.; Zhao, H.; Huang, K.; Zhen, S.; Chen, Y.-H., Adaptive robust constraint-following control for satellite formation flying with system uncertainty, J. Guid. Control Dyn., 40, 6, 1-7, (2017)
[25] Chen, Y.-H., Second-order constraints for equations of motion of constrained systems, IEEE/ASME Trans. Mechatron., 3, 3, 240-248, (1998)
[26] Chen, Y.-H., Constraint-following servo control design for mechanical systems, J. Vib. Control, 15, 3, 369-389, (2009) · Zbl 1272.70131
[27] Udwadia, F. E.; Kalaba, R. E., Analytical Dynamics, (1996), Cambridge University Press · Zbl 1346.70011
[28] Khalil, H. K., Nonlinear Systems, (2002), Prentice-Hall, Inc.: Prentice-Hall, Inc. Upper Saddle River, NJ
[29] Goult, R. J., Applied Linear Algebra, (1978), Prentice Hall · Zbl 0418.15001
[30] Chen, Y.-H., On the deterministic performance of uncertain dynamical systems, Int. J. Control, 43, 5, 1557-1579, (1986) · Zbl 0606.93028
[31] Xiao-Gang, R.; Ren, H. G., Two-wheeled self-balancing mobile robot dynamic model and balancing control, Appl. Res. Comput., 26, 1, 99-101, (2009)
[32] Chen, M., Robust tracking control for self-balancing mobile robots using disturbance observer, IEEE/CAA J. Autom. Sin., 4, 3, 458-465, (2017)
[33] Hu, J. S.; Wang, J. J.; Sun, G. C., Self-balancing control and manipulation of a glove puppet robot on a two-wheel mobile platform, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 424-425, (2009)
[34] Peng, K.; Ruan, X.; Zuo, G., Dynamic model and balancing control for two-wheeled self-balancing mobile robot on the slopes, Intelligent Control and Automation, 3681-3685, (2012)
[35] Qin, Y.; Liu, Y.; Zang, X.; Liu, J., Balance control of two-wheeled self-balancing mobile robot based on TS fuzzy model, International Forum on Strategic Technology, 406-409, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.