×

Calculating the mean amplitude of glycemic excursions from continuous glucose data using an open-code programmable algorithm based on the integer nonlinear method. (English) Zbl 1411.92152

Summary: The mean amplitude of glycemic excursions (MAGE) is an essential index for glycemic variability assessment, which is treated as a key reference for blood glucose controlling at clinic. However, the traditional “ruler and pencil” manual method for the calculation of MAGE is time-consuming and prone to error due to the huge data size, making the development of robust computer-aided program an urgent requirement. Although several software products are available instead of manual calculation, poor agreement among them is reported. Therefore, more studies are required in this field. In this paper, we developed a mathematical algorithm based on integer nonlinear programming. Following the proposed mathematical method, an open-code computer program named MAGECAA v1.0 was developed and validated. The results of the statistical analysis indicated that the developed program was robust compared to the manual method. The agreement among the developed program and currently available popular software is satisfied, indicating that the worry about the disagreement among different software products is not necessary. The open-code programmable algorithm is an extra resource for those peers who are interested in the related study on methodology in the future.

MSC:

92C50 Medical applications (general)
90C10 Integer programming
90C30 Nonlinear programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Monnier, L.; Mas, E.; Ginet, C.; Michel, F.; Villon, L.; Cristol, J.; Colette, C., Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes, The Journal of the American Medical Association, 295, 14, 1681-1687 (2006) · doi:10.1001/jama.295.14.1681
[2] Hirsch, I. B.; Brownlee, M., The effect of glucose variability on the risk of microvascular complications in type 1 diabetes: Response to Kilpatrick et al. and Bolli [9], Diabetes Care, 30, 1, 186-187 (2007) · doi:10.2337/dc06-1610
[3] Bragd, J., Can glycemic variability, as calculated form blood glucose self-monitoring, predict the development of complications in type 1 diabetes over a decade?, Diabetes & Metabolism, 34, 6, 612-616 (2008)
[4] Škrha, J., Glucose variability, HbA1c and microvascular complications, Reviews in Endocrine & Metabolic Disorders, 17, 1, 1-8 (2016) · doi:10.1007/s11154-016-9356-1
[5] Prázný, M., Short-term study and long-term glycemic variability and its relationship to microvascular complications of diabetes, Vnitrni Lekarstvi, 62, Supply 4 (2016)
[6] Caprnda, M., Glycemic variability and Vascular Complication in Patients with Type 2 Diabetes Mellitus, Folia Med, 59, 3, 270-278 (2017)
[7] Eslami, S.; Taherzadeh, Z.; Schultz, M. J.; Abu-Hanna, A., Glucose variability measures and their effect on mortality: a systematic review, Intensive Care Medicine, 37, 4, 583-593 (2011) · doi:10.1007/s00134-010-2129-5
[8] Hermanides, J.; Vriesendorp, T. M.; Bosman, R. J.; Zandstra, D. F.; Hoekstra, J. B.; Devries, J. H., Glucose variability is associated with intensive care unit mortality, Critical Care Medicine, 38, 3, 838-842 (2010) · doi:10.1097/CCM.0b013e3181cc4be9
[9] Schlichtkrull, J.; Munck, O.; Jersild, M., The M-Value, an Index of Blood-sugar Control in Diabetics, Journal of Internal Medicine, 177, 1, 95-102 (1965) · doi:10.1111/j.0954-6820.1965.tb01810.x
[10] Wojcicki, J. M., Mathematical descriptions of the glucose control in diabetes therapy. Analysis of the Schlichtkrull ’M’-value, Hormone and Metabolic Research, 27, 1, 1-5 (1995) · doi:10.1055/s-2007-979895
[11] Wójcicki, J., “J”-Index. A New Proposition of the Assessment of Current Glucose Control in Diabetic Patients, Hormone and Metabolic Research, 27, 01, 41-42 (1995) · doi:10.1055/s-2007-979906
[12] Kovatchev, B. P.; Cox, D. J.; Gonder-Frederick, L. A.; Clarke, W., Symmetrization of the blood glucose measurement scale and its applications, Diabetes Care, 20, 11, 1655-1658 (1997) · doi:10.2337/diacare.20.11.1655
[13] Hill, N. R.; Hindmarsh, P. C.; Stevens, R. J.; Stratton, I. M.; Levy, J. C.; Matthews, D. R., A method for assessing quality of control from glucose profiles, Diabetic Medicine, 24, 7, 753-758 (2007) · doi:10.1111/j.1464-5491.2007.02119.x
[14] Kovatchev, B. P.; Otto, E.; Cox, D.; Gonder-Frederick, L.; Clarke, W., Evaluation of a new measure of blood glucose variability in diabetes, Diabetes Care, 29, 11, 2433-2438 (2006) · doi:10.2337/dc06-1085
[15] Rodbard, D.; Bailey, T.; Jovanovic, L.; Zisser, H.; Kaplan, R.; Garg, S. K., Improved quality of glycemic control and reduced glycemic variability with use of continuous glucose monitoring, Diabetes Technology & Therapeutics, 11, 11, 717-723 (2009) · doi:10.1089/dia.2009.0077
[16] Hirsch, I. B.; Balo, A. K.; Sayer, K.; Garcia, A.; Buckingham, B. A.; Peyser, T. A., A simple composite metric for the assessment of glycemic status from continuous glucose monitoring data: Implications for clinical practice and the artificial pancreas, Diabetes Technology & Therapeutics, 19, S38-S48 (2017) · doi:10.1089/dia.2017.0080
[17] Monnier, L.; Colette, C.; Owens, D. R., Glycemic variability: The third component of the dysglycemia in diabetes. Is it important? how to measure it?, Journal of Diabetes Science and Technology, 2, 6, 1094-1100 (2008) · doi:10.1177/193229680800200618
[18] Rodbard, D., New and improved methods to characterize glycemic variability using continuous glucose monitoring, Diabetes Technology & Therapeutics, 11, 9, 551-565 (2009) · doi:10.1089/dia.2009.0015
[19] Service, F. J.; Molnar, G. D.; Rosevear, J. W.; Ackerman, E.; Gatewood, L. C.; Taylor, W. F., Mean amplitude of glycemic excursions, a measure of diabetic instability, Diabetes, 19, 9, 644-655 (1970) · doi:10.2337/diab.19.9.644
[20] Service, F. J.; Nelson, R. L., Characteristics of glycemic stability, Diabetes Care, 3, 1, 58-62 (1980) · doi:10.2337/diacare.3.1.58
[21] Service, F. J.; O’Brien, P. C.; Rizza, R. A., Measurements of glucose control, Diabetes Care, 10, 2, 225-237 (1987) · doi:10.2337/diacare.10.2.225
[22] Baghurst, P. A., Calculating the mean amplitude of glycemic excursion from continuous glucose monitoring data: An automated algorithm, Diabetes Technology & Therapeutics, 13, 3, 296-302 (2011) · doi:10.1089/dia.2010.0090
[23] Fritzsche, G.; Kohnert, K.-D.; Heinke, P.; Vogt, L.; Salzsieder, E., The use of a computer program to calculate the mean amplitude of glycemic excursions, Diabetes Technology & Therapeutics, 13, 3, 319-325 (2011) · doi:10.1089/dia.2010.0108
[24] Czerwoniuk, D.; Fendler, W.; Walenciak, L.; Mlynarski, W., GlyCulator: A glycemic variability calculation tool for continuous glucose monitoring data, Journal of Diabetes Science and Technology, 5, 2, 447-451 (2011) · doi:10.1177/193229681100500236
[25] Hill, N. R., Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups, Diabetes Technology & Therapeutics, 13, 9, 921-928 (2011)
[26] Sechterberger, M. K.; Luijf, Y. M.; Devries, J. H., Poor agreement of computerized calculators for mean amplitude of glycemic excursions, Diabetes Technology & Therapeutics, 16, 2, 72-75 (2014) · doi:10.1089/dia.2013.0138
[27] Anjidani, M.; Effati, S., Steepest descent method for solving zero-one nonlinear programming problems, Applied Mathematics and Computation, 193, 1, 197-202 (2007) · Zbl 1193.90190 · doi:10.1016/j.amc.2007.03.088
[28] M. Kılınç, Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON, Optimization Methods & Software, 1-23 (2017)
[29] Storn, R.; Price, K., Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 11, 4, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[30] Kukkonen, S.; Coello Coello, C. A., Generalized differential evolution for numerical and evolutionary optimization, Studies in Computational Intelligence, 663, 253-279 (2017) · Zbl 1354.90140 · doi:10.1007/978-3-319-44003-3_11
[31] Rakshit, P., Uncertainty Management in Differential Evolution Induced Multiobjective Optimization in Presence of Measurement Noise, IEEE Transactions on Systems Man Cybernetics Systems, 44, 7, 922-937 (2017)
[32] Das, S.; Konar, A.; Chakraborty, U. K., Two improved differential evolution schemes for faster global search, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’05) · doi:10.1145/1068009.1068177
[33] Qin, A. K.; Suganthan, P. N., Self-adaptive differential evolution algorithm for numerical optimization, Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’05), IEEE · doi:10.1109/CEC.2005.1554904
[34] Lin, Y. C., A mixed-coding scheme of evolutionary algrithms to solve mixed-integer nonlinear programming problems, Computer Mathematics with Applications, 47, 8-9, 1295-1307 (2004) · Zbl 1057.90035 · doi:10.1016/S0898-1221(04)90123-X
[35] Bland, J. M.; Altman, D. G., Measuring agreement in method comparison studies, Statistical Methods in Medical Research, 8, 2, 135-160 (1999) · doi:10.1191/096228099673819272
[36] Giavarina, D., Understanding Bland Altman analysis, Biochemia Medica, 25, 2, 141-151 (2015) · doi:10.11613/BM.2015.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.