×

zbMATH — the first resource for mathematics

Diversified models for portfolio selection based on uncertain semivariance. (English) Zbl 1411.91491
Summary: Since the financial markets are complex, sometimes the future security returns are represented mainly based on experts’ estimations due to lack of historical data. This paper proposes a semivariance method for diversified portfolio selection, in which the security returns are given subjective to experts’ estimations and depicted as uncertain variables. In the paper, three properties of the semivariance of uncertain variables are verified. Based on the concept of semivariance of uncertain variables, two types of mean-semivariance diversified models for uncertain portfolio selection are proposed. Since the models are complex, a hybrid intelligent algorithm which is based on 99-method and genetic algorithm is designed to solve the models. In this hybrid intelligent algorithm, 99-method is applied to compute the expected value and semivariance of uncertain variables, and genetic algorithm is employed to seek the best allocation plan for portfolio selection. At last, several numerical examples are presented to illustrate the modelling idea and the effectiveness of the algorithm.

MSC:
91G10 Portfolio theory
90C59 Approximation methods and heuristics in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.econmod.2014.10.001
[2] DOI: 10.1007/s10845-014-1009-1
[3] DOI: 10.1016/j.eswa.2011.05.030
[4] DOI: 10.1016/j.ejor.2004.01.040 · Zbl 1066.91039
[5] DOI: 10.1016/S0377-2217(02)00784-1 · Zbl 1046.91057
[6] DOI: 10.1080/00207721.2011.555011 · Zbl 1307.91162
[7] DOI: 10.1007/978-3-642-11214-0
[8] DOI: 10.1016/j.eswa.2011.11.119
[9] DOI: 10.1016/j.insmatheco.2014.10.001 · Zbl 1306.91127
[10] DOI: 10.1016/j.knosys.2015.10.030
[11] DOI: 10.2307/1914185 · Zbl 0411.90012
[12] DOI: 10.1016/j.insmatheco.2013.06.005 · Zbl 1304.91119
[13] DOI: 10.1016/j.econmod.2014.05.036
[14] DOI: 10.1016/j.ejor.2009.05.003 · Zbl 1175.90438
[15] DOI: 10.1007/978-3-540-73165-8_5
[16] Liu B, Journal of Uncertain Systems, 3 (1) pp 3– (2009)
[17] DOI: 10.1007/978-3-642-13959-8
[18] Liu B, Journal of Uncertain Systems, 6 (1) pp 3– (2012)
[19] DOI: 10.1080/0020772031000158492 · Zbl 1074.91533
[20] DOI: 10.1007/s00500-012-0935-0 · Zbl 1281.60005
[21] Liu Y., Journal of Uncertain Systems, 4 (3) pp 181– (2010)
[22] DOI: 10.1016/j.insmatheco.2015.06.004 · Zbl 1348.91172
[23] Liu Y., Journal of Uncertain Systems, 6 (4) pp 299– (2012)
[24] DOI: 10.1142/S021848851450024X · Zbl 1323.62102
[25] DOI: 10.1016/j.ejor.2014.10.061 · Zbl 1341.90151
[26] DOI: 10.1016/j.ejor.2013.08.035 · Zbl 1304.91202
[27] DOI: 10.2307/2975974
[28] Markowitz H, Portfolio selection: Efficient diversification of investments (1959)
[29] DOI: 10.1007/s10700-012-9146-5
[30] DOI: 10.1080/09720502.2010.10700701 · Zbl 1229.28029
[31] DOI: 10.1016/S0378-4266(02)00261-3
[32] DOI: 10.1016/j.ejor.2015.03.017 · Zbl 1346.91219
[33] DOI: 10.1007/s00500-014-1535-y · Zbl 1371.91164
[34] Shannon C, The mathematical theory of communication (1949) · Zbl 0041.25804
[35] DOI: 10.1080/00207721.2013.784820 · Zbl 1316.93071
[36] DOI: 10.1016/j.mcm.2011.10.039 · Zbl 1255.62040
[37] Wang X., Information: An International Interdisciplinary Journal, 15 (2) pp 449– (2012)
[38] DOI: 10.1007/s10700-013-9174-9 · Zbl 1397.91154
[39] DOI: 10.1080/00207721.2010.517866 · Zbl 1307.93469
[40] DOI: 10.1080/00207720902985385 · Zbl 1292.91178
[41] DOI: 10.1016/j.insmatheco.2015.03.029 · Zbl 1318.91127
[42] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606
[43] DOI: 10.1080/00207721.2013.871366 · Zbl 1335.91073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.