zbMATH — the first resource for mathematics

Lie-deformed quantum Minkowski spaces from twists: Hopf-algebraic versus Hopf-algebroid approach. (English) Zbl 1411.81119
Summary: We consider new abelian twists of Poincaré algebra describing nonsymmetric generalization of the ones given in [the first and the last author, ibid. 633, No. 1, 116–124 (2006; Zbl 1247.81216)], which lead to the class of Lie-deformed quantum Minkowski spaces. We apply corresponding twist quantization in two ways: as generating quantum Poincaré-Hopf algebra providing quantum Poincare symmetries, and by considering the quantization which provides Hopf algebroid describing class of quantum relativistic phase spaces with built-in quantum Poincaré covariance. If we assume that Lorentz generators are orbital, i.e., do not describe spin degrees of freedom, one can embed the considered generalized phase spaces into the ones describing the quantum-deformed Heisenberg algebras.

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
58B32 Geometry of quantum groups
17B37 Quantum groups (quantized enveloping algebras) and related deformations
Full Text: DOI
[1] Lukierski, J.; Woronowicz, M., New Lie-algebraic and quadratic deformations of Minkowski space from twisted poincare symmetries, Phys. Lett. B, 633, 116-124, (2006) · Zbl 1247.81216
[2] Mead, C. A., Phys. Rev., 135B, 849, (1964)
[3] Doplicher, S.; Fredenhagen, K.; Roberts, J. E., Spacetime quantization induced by classical gravity, Phys. Lett. B, 331, 39, (1994)
[4] Doplicher, S.; Fredenhagen, K.; Roberts, J. E., The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys., 172, 187, (1995) · Zbl 0847.53051
[5] Kempf, A.; Mangano, G., Minimal length uncertainty relation and ultraviolet regularization, Phys. Rev. D, 55, 7909, (1997)
[6] Cianfrani, F.; Kowalski-Glikman, J.; Pranzetti, D.; Rosati, G., Symmetries of quantum spacetime in three dimensions, Phys. Rev. D, 94, (2016)
[7] Seiberg, N.; Witten, E., String theory and noncommutative geometry, J. High Energy Phys., 9, (1999) · Zbl 0957.81085
[8] De Boer, J.; Grassi, P. A.; van Nieuwenhuizen, P., Non-commutative superspace from string theory, Phys. Lett. B, 574, 98, (2003) · Zbl 1058.81076
[9] Drinfeld, V., Quantum groups, (Berkeley, 1985, Proc. Int. Congr. Math., vol. 1, (1986), Academic Press), 798
[10] Majid, S., Foundations of quantum group theory, (1995), Cambridge University Press · Zbl 0857.17009
[11] Lu, J-H., Hopf algebroids and quantum grupoids
[12] Brzezinski, T.; Militaru, G., Bialgebroids, \(\times_A\)-biaglebras and duality, J. Algebra, 251, 279, (2002) · Zbl 1003.16033
[13] Bohm, G., Hopf algebroids · Zbl 1220.16022
[14] Meljanac, S.; Skoda, Z.; Stojic, M., Lie type noncommutative phase space are Hopf algebroids, Lett. Math. Phys., 107, 475, (2017) · Zbl 1361.16015
[15] Xu, Ping, Quantum grupoids, Commun. Math. Phys., 216, 539, (2001) · Zbl 0986.17003
[16] Borowiec, A.; Pachol, A., Twisted bialgebroids versus bialgebroids from a Drinfeld twist, J. Phys. A, 50, 055205, (2017) · Zbl 1357.81119
[17] Meljanac, S.; Skoda, Z., Hopf algebroid twists for deformation quantization of linear Poisson structures · Zbl 1388.53100
[18] Lukierski, J.; Nowicki, A., Heisenberg double description of kappa-poincare algebra and kappa-deformed phase space, Phys. At. Nucl., 61, (1998)
[19] Balachandran, A. P.; Joseph, A.; Padmanabhan, P.; Balachandran, A. P.; Padmanabhan, P., Non-Pauli effects from noncommutative spacetimes, Phys. Rev. Lett., J. High Energy Phys., 1012, (2010) · Zbl 1294.81253
[20] Meljanac, D.; Meljanac, S.; Pikutić, D.; Gupta, K. S., Twisted statistics in Lie-deformed Minkowski spaces, Phys. Rev. D, 96, (2017)
[21] Lukierski, J.; Skoda, Z.; Woronowicz, M., κ-deformed covariant quantum phase spaces as Hopf algebroids, Phys. Lett. B, 750, 401, (2015) · Zbl 1364.81170
[22] Takeuchi, M., J. Math. Soc. Jpn., 29, 495, (1977)
[23] Schauenburg, P., The dual and the double of a Hopf algebroid are Hopf algebroids · Zbl 1384.16023
[24] Kovačević, D.; Meljanac, S.; Pachoł, A.; Štrajn, R., Generalized poincare algebras, Hopf algebras and kappa-Minkowski spacetime, Phys. Lett. B, 711, 122-127, (2012)
[25] Meljanac, S.; Samsarov, A.; Strajn, R., κ-deformation of phase space; generalized poincare algebras and R-matrix, J. High Energy Phys., 8, (2012) · Zbl 1397.81118
[26] Juric, T.; Meljanac, S.; Strajn, R., κ-poincare-Hopf algebra and Hopf algebroid structure of phase space from twist, Phys. Lett. A, 377, 2472, (2013) · Zbl 1311.81155
[27] Jurić, T.; Meljanac, S.; Štrajn, R., Twists, realizations and Hopf algebroid structure of kappa-deformed phase space, Int. J. Mod. Phys. A, 29, (2014) · Zbl 1284.81175
[28] Jurić, T.; Kovačević, D.; Meljanac, S., κ-deformed phase space, Hopf algebroid and twisting, SIGMA, 10, 106, (2014) · Zbl 1310.81098
[29] Kovačević, D.; Meljanac, S., κ-Minkowski spacetime, kappa-Poincaré Hopf algebra and realizations, J. Phys. A, Math. Theor., 45, (2012) · Zbl 1241.83010
[30] Meljanac, S.; Meljanac, D.; Mercati, F.; Pikutić, D., Noncommutative spaces and Poincaré symmetry, Phys. Lett. B, 766, 181-185, (2017) · Zbl 1397.81106
[31] Meljanac, S.; Meljanac, D.; Pachoł, A.; Pikutić, D., Remarks on simple interpolation between Jordanian twists, J. Phys. A, 50, 26, (2017) · Zbl 1370.81094
[32] Lukierski, J.; Nowicki, A.; Ruegg, H.; Tolstoy, V. N., Q-deformation of Poincaré algebra, Phys. Lett. B, 264, 331, (1991)
[33] Lukierski, J.; Nowicki, A.; Ruegg, H., New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett. B, 293, 344, (1992) · Zbl 0834.17022
[34] Lukierski, J.; Minnaert, P.; Nowicki, A., \(D = 4\) quantum poincare-Heisenberg algebra, (Gruber, B., Proc. of Conference “Symmetries in Science VI: from Rotation Groups to Quantum Algebras”, (Bregenz, August 1992), Plenum Press), 469 · Zbl 0854.17019
[35] Kowalski-Glikman, J.; Nowak, S., Int. J. Mod. Phys. D, 12, 299, (2003)
[36] Borowiec, A.; Pachol, A., SIGMA, 6, (2010)
[37] Souriau, J. M., Structure des systemes dynamiques, (1970), Dunod Paris · Zbl 0186.58001
[38] Bette, A.; Zakrzewski, J., J. Phys. A, 30, 195, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.