×

zbMATH — the first resource for mathematics

Convergence of superpositions of scaled renewal processes with a finite number of different distributions. (English) Zbl 1411.60133
MSC:
60K10 Applications of renewal theory (reliability, demand theory, etc.)
60K05 Renewal theory
90B15 Stochastic network models in operations research
Software:
longmemo
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. J. Adler, R. E. Feldman, and M. S. Taqqu (Eds.), A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Birkhauser, Boston (1998). · Zbl 0901.00010
[2] P. Arby and D. Veitch, ”Wavelet analysis of long range dependent traffic,” IEEE Trans. Inform. Theor., 44, 2–15 (1998). · Zbl 0905.94006 · doi:10.1109/18.650984
[3] J. Beran, Statistics for Long-Memory Processes, Chapman and Hall, New York (1994). · Zbl 0869.60045
[4] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge Univ. Press., Cambridge (1987). · Zbl 0617.26001
[5] P. Embrechts and M. Maejima, An Introduction to the Theory of Self-Similar Stochastic Processes, Preprint (2000). · Zbl 1219.60040
[6] A. Feldmann, A. C. Gilbert, and W. Willinger, ”Data networks as cascades: Investigating the multifractal nature of Internet WAN traffic,” Comp. Comm. Rev., 28, No.4, 42–55 (1998). · doi:10.1145/285243.285256
[7] H. E. Hurst, ”Long-term storage capacity of reservoirs,” Trans. Amer. Soc. Civil Engineers, 116, 770–799 (1951).
[8] I. A. Ibragimov and Y. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolterts-Nordhoff, The Netherlands (1971). · Zbl 0219.60027
[9] D. L. Jagerman, B. Melamed, and W. Willinger, ”Stochastic modelling of traffic processes,” in: Frontiers in Queueing: Models, Methods, and Problems, CRC Press, Boca Raton (1997), pp. 271–310. · Zbl 0871.60085
[10] R. Gaigalas and I. Kaj, ”Convergence of scaled renewal processes and a packet arrival model,” Bernoulli (2002) (to appear). · Zbl 1043.60077
[11] I. Kaj, ”Stochastic modelling in broadband communications systems,” SIAM Monogf. Math. Model. Comput., 8 (2002). · Zbl 1020.94001
[12] Yu. S. Khokhlov, ”Pseudostable distributions and their domains of attraction,” Obozr. Prikl. Prom. Mat., 2, No.4, 1143–1154 (1996). · Zbl 0927.60018
[13] C. D’Apice, Yu. S. Khokhlov, and O. I. Sidorova, Asymptotic Properties of Random Sums of Independent Random Variables in the Case of a Finite Number of Different Distributions, Preprint (2003).
[14] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Willson, ”On the self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Network., 2, 1–15 (1994). · Zbl 01936506 · doi:10.1109/90.282603
[15] J. B. Levy and M. S. Taqqu, ”Renewal reward processes with heavy-tailed inter-arrival times and heavy-tailed rewards,” Bernoulli, 6, No.1, 23–44 (2000). · Zbl 0954.60071 · doi:10.2307/3318631
[16] B. B. Mandelbrot, ”Long-run linearity, local Gaussian processes, H-spectra, and infinite variance,” Inter. Econom. Rev., 10, 82–113 (1969). · Zbl 0191.51002 · doi:10.2307/2525574
[17] J. D. Mason, ”Convolutions of stable laws as limit distributions of partial sums,” Ann. Math. Statist., 41, No.1, 101–114 (1970). · Zbl 0192.55701 · doi:10.1214/aoms/1177697192
[18] Th. Mikosch, S. Resnick, H. Rootzen, and A. Stegeman, ”Is network traffic approximated by stable Levy motion or fractional Brownian motion?” Ann. Appl. Probab., 12, No.1, 23–68 (2002). · Zbl 1021.60076 · doi:10.1214/aoap/1015961155
[19] I. Norros, ”A storage model with self-similar input,” Queue. Syst., 16, 387–396 (1994). · Zbl 0811.68059 · doi:10.1007/BF01158964
[20] E. V. Rybko, Asymptotic Properties of Random Sums of Independent Random Variables [in Russian], Ph. D. Thesis, Moscow State Univ., Moscow (1994). · Zbl 0856.60049
[21] V. Paxson and S. Floyd, ”Wide area traffic: The failure of Poisson modelling,” IEEE/ACM Trans. Network., 3, 226–244 (1995). · doi:10.1109/90.392383
[22] G. Samorodnitsky and M. S. Taqqu, Stable Nongaussian Random Processes: Stochastic Models with Infinite Variance, Chapman and Hall, New York (1994). · Zbl 0925.60027
[23] K. Park and W. Willinger (Eds.), Self-Similar Network Traffic and Performance, Wiley, New York (2000).
[24] H. G. Tucker, ”Convolutions of distributions attracted to stable laws,” Ann. Math. Statist., 39, No.5, 1381–1390 (1968). · Zbl 0165.20102
[25] M. S. Taqqu and J. B. Levy, ”Using renewal processes to generate long-range dependence and high variability,” in: Dependence in Probability and Statistics, Birkhauser, Boston (1986), pp. 73–89. · Zbl 0601.60085
[26] M. S. Taqqu, W. Willinger, and R. Serman, ”Proof of a fundamental result in self-similar traffic modelling,” Comp. Comm. Rev., 27, No.2, 5–23 (1997). · doi:10.1145/263876.263879
[27] M. S. Taqqu, V. Teverovsky, and W. Willinger, ”Is network traffic self-similar or multifractal?” (1997). · Zbl 0908.60078
[28] D. Doukhan, G. Oppenheim, and M. S. Taqqu (Eds.), Theory and Applications of Long-Range Dependence, Birkhauser, Basel (2003). · Zbl 1005.00017
[29] W. Willinger, M. S. Taqqu, R. Sherman, and D. Wilson, ”Self-similarity through high variability: Statistical analysis of Ethernet LAN traffic at the source level,” Comp. Comm. Rev., 25, 100–113 (1995). · doi:10.1145/217391.217418
[30] W. Willinger and V. Paxson, ”Where mathematics meets the Internet,” Notices AMS, 45, No.8, 961–970 (1998). · Zbl 0973.00523
[31] A. A. Zinger, ”On a class of limit distributions for normalized sums of independent random variables,” Teor. Veroyatn. Primen., 10, No.4, 607–626 (1965). · Zbl 0235.60021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.